▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bayesian Inference and Explainable AI

Quantifying the uncertainty of the explanations

Vasilis Gkolemis¹

¹ATHENA Research and Innovation Center

November 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Program

Bayesian Formulation

- Differences with traditional ML
- Pros and Cons

2 MSc Dissertation - UoE 2020

- Likelihood-free inference methods
- Robust Optimization Monte Carlo (ROMC)
- Implementation at ELFI
- Future Ideas

Traditional Machine Learning

- Parametric model $f_{\boldsymbol{\theta}} : \boldsymbol{x} \to \boldsymbol{y}$
- Define a distance function d(·, ·) and measure the distance (loss) from observed data

$$L(\boldsymbol{\theta}) = \sum_{i}^{N} d(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{i}), y^{i})$$
(1)

• Search for the parameter set $\hat{\theta}$ that reproduces the observed data best

$$\hat{\theta} = \underset{\theta}{\arg\min} L(\theta) \tag{2}$$

We search for a single configuration (point-estimate) $\hat{\theta}$

Bayesian Formulation

- On the modelling part:
 - we need the joint distribution $p(\mathbf{x}, y, \theta)$
 - to replace the parametric model $f_{\theta}: \mathbf{x} \to \mathbf{y}$
- Training part:
 - infer the posterior distribution $p(\theta|D)$
 - to replace the optimal point estimate $\hat{\theta} = \arg \min_{\theta} L(\theta)$
- Prediction part:
 - infer the predictive distribution $p(y|\mathbf{x}, D)$
 - to replace the point-estimate prediction $y = f_{\hat{\theta}}(\mathbf{x})$

We replace point estimates with distributions (uncertainty quantification)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Modelling part

- joint distribution $p(\mathbf{x}, y, \theta) = p(y|\mathbf{x}, \theta)p(\mathbf{x})p(\theta)$
- $p(\theta)$, our prior belief about the parameters of the model
- $p(y|\mathbf{x}, \boldsymbol{\theta})$, the likelihood of the model
- joint distribution can be defined as a DAG

• We need to model $p(\theta)$ and $p(y|x, \theta)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Training part

• We use Bayes law to infer the posterior distribution

$$p(\boldsymbol{\theta}|D) = \frac{p(D|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(D)} \propto \prod_{i}^{N} p(y^{i}|\boldsymbol{x}^{i},\boldsymbol{\theta})p(\boldsymbol{\theta})$$
(3)

where $D = \{ \mathbf{x}^{i}, y^{i} \}_{i \in \{1, ..., N\}}$, the observed data (training-set)

• In the extreme case where $p(\theta|D) = \delta(\theta - \hat{\theta})$, we get a point-estimate is in traditional ML

The 'training process' leads to many possible models, each one with different probability (uncertainty about the model)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inference part

- We need to solve/approximate the predictive distribution $p(y|\mathbf{x}, D) = \int_{\theta} p(y|\mathbf{x}, \theta) p(\theta|D) \partial \theta$
- We consider the posterior $p(\theta|D)$ as known (computed exactly or approximated)
- In the extreme case where $p(\theta|D) = \delta(\theta \hat{\theta})$, we get all the mass of the prediction $p(y|\mathbf{x}, D) = p(y|\mathbf{x}, \hat{\theta})$ from a single model

The 'prediction process' gets one prediction per each plausible model (uncertainty about the model leads to uncertainty about the prediction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bayesian Formulation - Disadvantages

What we lose

- On the modelling part
 - Time to think how the input features x_i relate to each other i.e. building the DAG
- On the training-prediction (inference) part
 - Expressions difficult to approximate
 - $p(\theta|D)$ how to compute the posterior distribution?
 - $p(y|\mathbf{x}, D) = \int_{\theta} p(y|\mathbf{x}, \theta) p(\theta|D) \partial \theta$ how to compute the predictive distribution?

Bayesian Formulation is difficult from both the mathematical and the computational point-of-view

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bayesian Formulation - Advantages

What we get:

- On the modelling part
 - Specify who the features relate to each other
 - check Model-based Machine Learning a new approach for ML model building
- On the inference part
 - Uncertainty estimation! Why we need it?
 - Most times the available data is not enough to reveal a single instance $\hat{\theta}$
 - Sometimes we want to predict on a new *x* that is very different from the training set

Let's be wise enough and be uncertain about our predictions.

MSc Dissertation - UoE 2020

Bayesian Formulation - Example

• In areas without training points our uncertainty is bigger

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Program

Bayesian Formulation

- Differences with traditional ML
- Pros and Cons

2 MSc Dissertation - UoE 2020

- Likelihood-free inference methods
- Robust Optimization Monte Carlo (ROMC)
- Implementation at ELFI
- Future Ideas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview of my MSc Dissertation

- In BI, estimating the posterior is the major difficult task
- Remember, *posterior* \propto *likelihood* * *prior*
- \bullet When the likelihood is intractable \rightarrow Likelihood-free inference (LFI) methods
- That was my MSc about:
 - Extending ROMC, a likelihood-free inference method
 - Initial paper by Ikonomov and Gutmann 2020
 - Implementing ROMC ELFI, a python package for LFI
 - https://elfi.readthedocs.io/en/latest/

LFI methods approximate the posterior when the likelihood is intractable - very difficult problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cases of intractable likelihood

- What causes an intractable likelihood?
 - Many reasons (e.g. intractable partition functions in unnormalized statistical models)
 - Most common reason \rightarrow unobserved/latent variables
 - Latent variables are really important in many modelling cases (example in next slide)
- Simulator-based models (those with intractable likelihood) are widely-used in natural sciences i.e. biology, epidemiology, neuroscience
- An overview of the field in Cranmer, Brehmer, and Louppe 2020

Simulator-based models provide valuable modelling freedom

Example of intractable likelihood (1)

- Predict the grade y of a candidate at an important test
- Grade is a direct consequence of two things
 - $u_1 \in [0, 10]$ the mental readiness of the candidate
 - $u_2 \in [0,10]$ the knowledge of the topic
- the mental readiness is direct consequence of
 - x_1 how many hours he has slept the previous night
 - x_2 how many times he has been in stressful exams in the past
- knowledge of the topic
 - x₃, years of experience in software engineering
 - x_4 , number of application he has developed

Think more about it; it is sensible to model the latent variables!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example of intractable likelihood (2)

- $L(\theta) = p(D|\theta) \propto \prod_{i}^{N} p(y^{i}|x^{i}, \theta) = \int_{u_{1}, u_{2}} p(y^{i}, u^{i}|x^{i}, \theta)$
- The likelihood is defined over an integral intractable in the general case
- But sampling is feasible i.e. draw $y \sim p(y|x, \theta)$

If we want latent variables, we have to use likelihood-free methods.

Optimization Monte Carlo (OMC)

• Core idea: Convert random sampling to a deterministic process Meeds and Welling 2015

$$x \sim p(x|\theta) \Rightarrow f(\theta, v) \to x$$
 (4)

- v is the nuisance variable that absorbs all the randomness
- $\arg \max_{\theta} p(x = x_0 | \theta) \rightarrow \arg \min_{\theta} |f(\theta, v = v_0) x_0|$
- In a computer program, the value that governs all randomness is the random seed

Maximizing the probability of generating some data can be converted to a deterministic optimization process

Robust Optimization Monte Carlo (ROMC), step (1)

- What is the objective? A way to approximate the intractable $L(\theta) = p(D|\theta)$
- What I have? Only a way to simulate points from $p(y|\mathbf{x}, \theta)$ (random simulator)
- Draw random seeds s and generate deterministic simulators $f_i(\theta)$
- For every f_i , search for the $\theta_i^* = argmin_{\theta}|f_i(\theta) D|$
- For every f_i , define an area S_i around θ_i^* such that $|f_i(\theta) D| < \epsilon$
- S_i is the acceptance region of the i th simulator

Convert random sampling to an optimization process and find the parameters θ_i that generate data close to the observations.

Robust Optimization Monte Carlo (ROMC), step (2)

• The approximate posterior is the sum of all such regions S_i, scaled by the prior

$$p(\theta|D) \approx p(\theta) \frac{1}{N} \sum_{i} S_i(\theta)$$
 (5)

where $S_i(\theta) = \frac{1}{V}$ if $|f_i(\theta) - D| < \epsilon$, otherwise 0

• Each point inside the area is equally probable to have generated the data

The posterior approximation is the sum of all the regions $S_i(\theta)$ that generate data close to the observations. (as in typical loss minimization)

An example of an acceptance region

Figure: The acceptance region S_i of a specific optimisation problem, that will contribute to the posterior.

MSc Dissertation - UoE 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ROMC - Training/Fitting part

1: procedure ROMC			
2:	for $i \leftarrow 1$ to n_1 do		
3:	$v_i\sim p(v)$	Draw nuisance variables	
4:	$f_i(\boldsymbol{ heta}) > 1$	Define deterministic simulator	
5:	$oldsymbol{ heta}_i^* = argmin_{oldsymbol{ heta}} f_i(oldsymbol{ heta}) - D $	▷ Solve optimization problem	
6:	if $ f_i(\boldsymbol{\theta}) - D > \epsilon$ then		
7:	Go to 2	Filter solution	
8:	Define the proposal area $\hat{\mathcal{S}}$	$i \rightarrow \text{Estimate proposal area}$	

Algorithmic view of the training part of ROMC

MSc Dissertation - UoE 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ROMC - Training part (Recap)

• Target of Bayesian Inference

• infer the posterior distribution $p(\theta|D)$

ROMC proposal

$$p(\theta|D) \approx p(\theta) \frac{1}{N} \sum_{i} S_{i}(\theta)$$
 (6)

where

•
$$S_i(\theta) = \frac{1}{V}$$
 if $|f_i(\theta) - D| < \epsilon$, otherwise 0

• V is the volume of $S_i(\theta)$

ROMC approximation of the posterior distribution using only the simulator

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

ROMC - Prediction part

1:			
2:	procedure ROMC		
3:	for $i \leftarrow 1$ to n_1 do		
4:	for $j \leftarrow 1$ to n_2 do		
5:	$oldsymbol{ heta}_{ij} \sim q_i$, compute w_{ij} > Samp		
6:	$E_{p(\theta D)}[h(\theta)]$	▷ Estimate an expectation	
7:	$p_{d,\epsilon}(oldsymbol{ heta})$	Evaluate the unnormalized posterior	
8:			

Algorithmic view of the prediction part of ROMC; how to sample from the posterior and estimate an expectation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ROMC - Prediction part

- Target of Bayesian Inference
 - infer the predictive distribution p(y|x, D)
- ROMC proposal
 - Sample from each samples from each acceptance region (w_{ij}, θ_{ij})
 - Normalize them to sum to one $w_{ij} = \frac{1}{\sum_{i} w_{ii}}$

•
$$p(y|x,D) \approx \sum_{i} \sum_{j} w_{ij} f_i(\theta,x)$$

ROMC approximation of the predictive distribution using only the simulator

MSc Dissertation - UoE 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ROMC - Advantages

- Efficient and Embarrassingly Parallel Framework for likelihood-free inference
- Efficient, because it turns every random-generating process to a deterministic optimization problem ⇒ does not spend samples unreasonably
- Embarrassingly Parallel, all optimisation processes can run in parallel ⇒ super-fast if many cores are accesible
- Framework, because is a general recipe. The components that will be used depend on the user e.g. gradient-based optimizer or bayesian optimization

ROMC is efficient and parallelizable.

Implementation at ELFI

- Fully parallelizable and extendable implementation at ELFI
- https://elfi.readthedocs.io/en/latest/
- Interactive jupyter notebooks with examples (google colab no need for installing anything)
 - Simple 1D example
 - Simple 2D example
 - Moving Average example
 - Tutorial for extending the ROMC method with a Neural Network
- Paper about to be submited at JSS

Feel-free to experiment with ROMC

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Find ways to make it efficient in high dimensional parametric space (\approx 20 is high for LFI methods)
- Implement ROMC in a package with automatic differentiation, to see how it scales in higer-dimensions
- JAX a good candidate, provides novel way to freeze the seed without global side-effects
- Research for better (accurate and efficient) ways to estimate the regions S_i in high-dimensions

Stay alert, there will be updates!