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Who we are

o Vasilis Gkolemis:
» Research Assistant at ATHENA Research Center (ATHENA RC)
» First-year PhD at Harokopio University of Athens (HUA)
» Main focus: Explainability under uncertainty
@ Supervisors:
» Christos Diou (HUA) — Generalization, Few(Zero)-shot learning
» Eirini Ntoutsi (UniBw-M) — Explainability, Fairness
» Theodore Dalamagas (ATHENA) — Databases, data semantics
o Paper | will present

» DALE: Differential Accumulated Local Effects for efficient and accurate
global explanations
» Accepted at Asian Conference Machine Learning (ACML) 2022
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https://givasile.github.io/
https://www.athenarc.gr/en/home
https://dit.hua.gr/index.php/en/
https://diou.github.io/
https://aiml-research.github.io/
https://scholar.google.gr/citations?user=WJOLNAYAAAAJ&hl=en
https://givasile.github.io/assets/pdf/gkolemis22_dale.pdf
https://givasile.github.io/assets/pdf/gkolemis22_dale.pdf
https://www.acml-conf.org/2022/

Questions

o Why did the model make a specific decision? local XAl

@ What could we change so that the model will make a different
decision? counterfactual

@ Can we summarize the model's behavior? global XAl

o If models are knowledge extractors, what have they learned? global
XAl

Feature Effect: global, model-agnostic, outputs a 1D plot
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Example

Consider the following mapping x — y
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Example

Process unknown — we only have samples

Sampling (with noise)
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Example

Our goal is to model the process using the available samples (regression)

Gkolemis, Vasilis (ATH-HUA) Research Group March 2023 4/31



Example
Linear model — Underfiting!

y=w X+ w

Linear Model
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Example

2" degree polynomial — Decent Fit!

2nd degree polynomial

2
y=wy X"+ ws- x4+ wy
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Example

39 degree polynomial — Good Fit!

2
y:W3-X3—|—W2-X + wy - X+ wy

3rd degree polynomial
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Example

9t" degree polynomial — Overfitting!
9 .
i=0

9th degree polynomial
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Problem diagnosis

Model behavior is by the shape of the function

Overfitting, Underfitting are easily diagnosed

(]

If the input has multiple dimensions D?

» We often have tens or hundreds of features
» Images and signals: Several thousands of input dimensions

@ Example: Risk Factors for Cervical Cancer Dataset

» input: 15 features (smoker, years of hormonal contraceptives, age)
» output: predict whether a woman will get cervical cancer
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https://link.springer.com/chapter/10.1007/978-3-319-58838-4_27

Feature Effect

y = f(xs) — plot showing the effect of xs on the output y
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Figure: Image taken from Interpretable ML book (Molnar, )

Feature Effect is simple and intuitive.
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Feature Effect Methods

@ x; — feature of interest, x. — other features

o Isolating the effect of x is a difficult task:
» features are correlated
» f has learned complex interactions

@ Three well-known methods:

» Partial Dependence Plots (PDP)
» M-Plots
» Accumulated Local Effects (ALE)
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Partial Dependence Plots (PDP)

@ Proposed by J. Friedman on 2001! and is the marginal of a
feature to the model output:

folxs) = Fx, [F (5, %c)] = / f (36 xe)P(xe)dxe

where:

> xs is the feature whose effect we wish to compute
» x. are the rest of the features

@ Approximation:

). Friedman. “Greedy function approximation: A gradient boosting machine.”
Annals of statistics (2001): 1189-1232
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Issues with PDPs

Marginal distribution P(x2)
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Issues with PDPs

@ Correlated features

» To compute the effect of x.ze = 20 on the output (cancer probability)
it will integrate over all Xyears_contraceptives Values, e.g., [0, 50]

> f can have weird behavior when X,ge = 20, Xyears_contraceptives = 20
(out of distribution)

> As a result, we have a wrong estimation of the feature effect
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MPlots

@ We use the value of xs as a condition, so we integrate over X.|xs

Fxe) = B o, [F (0 xc)] = / F(xe0 % )P(e ) e

where:

> X, is the feature whose effect we wish to compute
» x. the rest of the features

@ Approximation:

1 i
fs(xs):g z f(xs,xf;))

(0

X ' REXs
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MPlots

In the previous example

Conditional distribution P(x2|x1=0.75)
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Figure: C. Molnar, IML book
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Issues with M-Plots

o Aggregated effect symptom — the calculated effects result from the
combination of all (correlated) features
@ Real effect:
> Xage = 50 — 10

> Xyears,contraceptives =20—10
> aggregated effect close to 20

@ Because Xage, Xyears_contraceptives are correlated, MPlot may assign:

> Xage = 50 — 17 ~ aggregated effect
> Xyears_contraceptives = 20 — 17 = aggregated effect
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Accumulated Local Effects (ALE)?

@ Resolves problems that result from the feature correlation by
computing differences over a (small) window

f(xs):/xs E, |Z[af (2,%0)]0z
smn 2 0%

‘min

realistic isolates

’D. Apley and J. Zhu. “Visualizing the effects of predictor variables in black box
supervised learning models.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 82.4 (2020): 1059-1086.
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ALE approximation

ALE definition: f(xs) = [ Exc‘z[g—)i(z,xc)]az

Xs,min

ALE approximation: f(xs) = |S | Z [f(zk, x¢) — f(zk—1,x )]
ix'€S)

point effect

bin effect
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Figure: Image taken from Interpretable ML book (Molnar, )
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ALE approximation - weaknesses

kx
D= X Flaxd) ~ e K)

k i:x'€Sy

point efFect

bin effect

@ Point Effect = evaluation at bin limits
» 2 evaluations of f per point — slow

» change bin limits, pay again 2 % N evaluations of f — restrictive

» broad bins may create out of distribution (OOD) samples — not-robust
in wide bins

ALE approximation has some weaknesses
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Recap!

PDP — problems with correlated features — Unrealistic instances
MPlot — problems with correlated features — Aggregated effects
ALE — resolves both issues! But:

ALE approximation (estimation of ALE from the training set)

» slow when there are many features
» unrealistic instances when bins become bigger

o Differential ALE (DALE)!
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Our proposal: Differential ALE

XS AXZ| Z [6f I)]
%,_/

ix!' ESk
point effect

bin effect

@ Point Effect = evaluation on instances
» Fast — use of auto-differentiation, all derivatives in a single pass
> Versatile — point effects computed once, change bins without cost
» Secure — does not create artificial instances

For differentiable models, DALE resolves ALE weaknesses

Gkolemis, Vasilis (ATH-HUA) Research Group March 2023 16 /31



DALE is faster and versatile - theory

k
x Of (i
f(XS):AXZ ’ Z [ s> )]
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‘ point effect

bin effect

o Faster

» gradients wrt all features V,f(x') in a single pass
» auto-differentiation must be available (deep learning)

o Versatile
» Change bin limits, with near zero computational cost

DALE is faster and allows redefining bin-limits
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DALE is faster and versatile - Experiments

DALE vs ALE: Light setup DALE vs ALE: Heavy setup
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Figure: Light setup; small dataset (N = 102 instances), light f. Heavy setup; big
dataset (N = 10° instances), heavy f

DALE considerably accelerates the estimation
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DALE uses on-distribution samples - Theory
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@ point effect independent of bin limits

> g—xf(xs,xc) computed on real instances x' = (x, x/)

@ bin limits affect only the resolution of the plot

» wide bins — low resolution plot, bin estimation from more points
» narrow bins — high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances
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DALE uses on-distribution samples - Experiments

f(x1,x2,x3) = x1X2 + x1x3 + g(x)

(X1, X2, X3 =0)

® samples

x1 € [0,10],x2 ~ x1+¢€, x3 ~ N (0, 5?)
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@ bin estimation is noisy (samples
are few)

Intuition: we need wider bins (more samples per bin)
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DALE vs ALE - 40 Bins
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@ DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: on-distribution, noisy bin effect — poor estimation
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DALE vs ALE - 40 Bins

DALE ALE
309 ——- ground truth 309 -~ ground truth ,,/
20 204 --- f, L
104 10 g as
> > ’,’ = -
0 0 . sl
-10 101 “TTTTee- - ISty
~20 201 _pz===moTo
10
20 3 e | m— V73
5
g0 g
2 20
0 T
=5
0 2 4 6 8 10 0 2 4 6 8 10

o DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: on-distribution, noisy bin effect — poor estimation
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DALE vs ALE - 20 Bins

° samples:
bins H
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@ DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: on-distribution, noisy bin effect — poor estimation
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DALE vs ALE - 20 Bins

DALE ALE
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o DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: on-distribution, noisy bin effect — poor estimation
March 2023 22/31

Gkolemis, Vasilis (ATH-HUA) Research Group



DALE vs ALE - 10 Bins

f(X1, X2, X3 =0)
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@ DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: starts being OOD, noisy bin effect — poor estimation
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DALE vs ALE - 10 Bins

DALE ALE
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o DALE: on-distribution, noisy bin effect — poor estimation
@ ALE: starts being OOD, noisy bin effect — poor estimation
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DALE vs ALE - 5 Bins

f(X1, X2, X3 =0)
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@ DALE: on-distribution, robust bin effect — good estimation
@ ALE: completely OOD, robust bin effect — poor estimation
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DALE vs ALE - 5 Bins
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o DALE: on-distribution, robust bin effect —
@ ALE: completely OOD, robust bin effect — poor estimation

Gkolemis, Vasilis (ATH-HUA) Research Group March 2023 24 /31



DALE vs ALE - 3 Bins

f(X1, X2, X3 =0)

® samples

101 __- bins

X2

@ DALE: on-distribution, robust bin effect — good estimation
@ ALE: completely OOD, robust bin effect — poor estimation
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DALE vs ALE - 3 Bins

DALE ALE
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Future Ideas (1)

PDPs use ICE plots, for exhibiting heterogeneity
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Figure: PDP plot, taken from Goldstein et. al

Interpretation? Maybe y 1L x»
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https://arxiv.org/abs/1309.6392

Future Ideas (2)

PDPs use ICE plots, for exhibiting heterogeneity

partial yhat
-2 0

4

Figure: PDP-ICE plot, taken from Goldstein et. al

Interpretation now? Maybe y &~ +6x, depending on a condition
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https://arxiv.org/abs/1309.6392

Future ldeas (3)

@ Could ALE plots do the same?

@ Variance inside each bin?
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Figure: (Left) PDP-ICE (Right) ALE with heterogeneity
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Future Ideas (4) - Regional Effect plots

@ Heterogeneity — subspaces with homogeneous effects

Global PD Plot Regional PD Plots

)
3

o
Y
o

Predicted survival probability
o o
& 8

0.00 0.00
0 20 40 60 80 0 20 40 60 80
Age Age
Sex=F &Fare >26 === Sex = F & Fare < 26 & Pclass = {1,2} Sex =M & Pclass = {2,3} & Embarked = C

Sex=M&Pclass =1 === Sex =F & Fare <26 & Pclass =3 m== Sex =M & Pclass = {2,3} & Embarked = {Q, S}

Figure: REPID: Regional Effect plots, taken from Herbinger et. al

Same idea on ALE?
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https://arxiv.org/abs/2202.07254

® Questions?
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