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Who we are

Vasilis Gkolemis:
▶ Research Assistant at ATHENA Research Center (ATHENA RC)
▶ First-year PhD at Harokopio University of Athens (HUA)
▶ Main focus: Explainability under uncertainty

Supervisors:
▶ Christos Diou (HUA) → Generalization, Few(Zero)-shot learning
▶ Eirini Ntoutsi (UniBw-M) → Explainability, Fairness
▶ Theodore Dalamagas (ATHENA) → Databases, data semantics

Paper I will present
▶ DALE: Differential Accumulated Local Effects for efficient and accurate

global explanations
▶ Accepted at Asian Conference Machine Learning (ACML) 2022
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https://givasile.github.io/
https://www.athenarc.gr/en/home
https://dit.hua.gr/index.php/en/
https://diou.github.io/
https://aiml-research.github.io/
https://scholar.google.gr/citations?user=WJOLNAYAAAAJ&hl=en
https://givasile.github.io/assets/pdf/gkolemis22_dale.pdf
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Questions

Why did the model make a specific decision? local XAI

What could we change so that the model will make a different
decision? counterfactual

Can we summarize the model’s behavior? global XAI

If models are knowledge extractors, what have they learned? global
XAI

Feature Effect: global, model-agnostic, outputs a 1D plot
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Example

Consider the following mapping x → y
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Example

Process unknown → we only have samples
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Example

Our goal is to model the process using the available samples (regression)
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Example

Linear model → Underfiting!

y = w1 · x + w0
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Example

2nd degree polynomial → Decent Fit!

y = w2 · x2 + w1 · x + w0
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Example

3rd degree polynomial → Good Fit!

y = w3 · x3 + w2 · x2 + w1 · x + w0
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Example

9th degree polynomial → Overfitting!

y =
9∑

i=0

wi · x i
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Problem diagnosis

Model behavior is explained by the shape of the function

Overfitting, Underfitting are easily diagnosed

If the input has multiple dimensions D?
▶ We often have tens or hundreds of features
▶ Images and signals: Several thousands of input dimensions

Example: Risk Factors for Cervical Cancer Dataset
▶ input: 15 features (smoker, years of hormonal contraceptives, age)
▶ output: predict whether a woman will get cervical cancer

Gkolemis, Vasilis (ATH-HUA) Research Group March 2023 5 / 31

https://link.springer.com/chapter/10.1007/978-3-319-58838-4_27


Feature Effect

y = f (xs) → plot showing the effect of xs on the output y

Figure: Image taken from Interpretable ML book (Molnar, 2022)

Feature Effect is simple and intuitive.
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Feature Effect Methods

xs → feature of interest, xc → other features

Isolating the effect of xs is a difficult task:
▶ features are correlated
▶ f has learned complex interactions

Three well-known methods:
▶ Partial Dependence Plots (PDP)
▶ M-Plots
▶ Accumulated Local Effects (ALE)
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Partial Dependence Plots (PDP)

Proposed by J. Friedman on 20011 and is the marginal effect of a
feature to the model output:

fs(xs) = Exc [f (xs , xc)] =

∫
f (xs , xc)p(xc)dxc

where:
▶ xs is the feature whose effect we wish to compute
▶ xc are the rest of the features

Approximation:

f̂s(xs) =
1

n

n∑
i=1

f (xs , x
(i)
c )

1J. Friedman. “Greedy function approximation: A gradient boosting machine.”
Annals of statistics (2001): 1189-1232
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Issues with PDPs

Figure: C. Molnar, IML book
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Issues with PDPs

Correlated features
▶ To compute the effect of xage = 20 on the output (cancer probability)

it will integrate over all xyears contraceptives values, e.g., [0, 50]
▶ f can have weird behavior when xage = 20, xyears contraceptives = 20

(out of distribution)
▶ As a result, we have a wrong estimation of the feature effect
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MPlots

We use the value of xs as a condition, so we integrate over xc |xs

f (xs) = Exc |xs [f (xs , xc)] =

∫
f (xs , xc)p(xc |xs)dxc

where:
▶ xs is the feature whose effect we wish to compute
▶ xc the rest of the features

Approximation:

fs(xs) =
1

n

∑
i :x

(i)
s ≈xs

f (xs , x
(i)
c )
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MPlots

In the previous example

Figure: C. Molnar, IML book
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Issues with M-Plots

Aggregated effect symptom → the calculated effects result from the
combination of all (correlated) features

Real effect:
▶ xage = 50 → 10
▶ xyears contraceptives = 20 → 10
▶ aggregated effect close to 20

Because xage, xyears contraceptives are correlated, MPlot may assign:
▶ xage = 50 → 17 ≈ aggregated effect
▶ xyears contraceptives = 20 → 17 ≈ aggregated effect
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Accumulated Local Effects (ALE)2

Resolves problems that result from the feature correlation by
computing differences over a (small) window

f (xs) =

∫ xs

xmin

Exc |z︸︷︷︸
realistic

[
∂f

∂xs
(z , xc)︸ ︷︷ ︸

isolates

]∂z

2D. Apley and J. Zhu. “Visualizing the effects of predictor variables in black box
supervised learning models.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 82.4 (2020): 1059-1086.
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ALE approximation

ALE definition: f (xs) =
∫ xs
xs,min

Exc |z [
∂f
∂xs

(z , xc)]∂z

ALE approximation: f (xs) =
∑kx

k

1

|Sk |
∑

i :x i∈Sk

[f (zk , x i
c)− f (zk−1, x i

c)]︸ ︷︷ ︸
point effect︸ ︷︷ ︸

bin effect

Figure: Image taken from Interpretable ML book (Molnar, 2022)

Bin splitting (parameter K ) is crucial!
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ALE approximation - weaknesses

f (xs) =
kx∑
k

1

|Sk |
∑

i :x i∈Sk

[f (zk , x i
c)− f (zk−1, x i

c)]︸ ︷︷ ︸
point effect︸ ︷︷ ︸

bin effect

Point Effect ⇒ evaluation at bin limits
▶ 2 evaluations of f per point → slow
▶ change bin limits, pay again 2 ∗ N evaluations of f → restrictive
▶ broad bins may create out of distribution (OOD) samples → not-robust

in wide bins

ALE approximation has some weaknesses
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Recap!

PDP → problems with correlated features → Unrealistic instances

MPlot → problems with correlated features → Aggregated effects

ALE → resolves both issues! But:

ALE approximation (estimation of ALE from the training set)
▶ slow when there are many features
▶ unrealistic instances when bins become bigger

Differential ALE (DALE)!
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Our proposal: Differential ALE

f (xs) = ∆x
kx∑
k

1

|Sk |
∑

i :x i∈Sk

[
∂f

∂xs
(x is , x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

Point Effect ⇒ evaluation on instances
▶ Fast → use of auto-differentiation, all derivatives in a single pass
▶ Versatile → point effects computed once, change bins without cost
▶ Secure → does not create artificial instances

For differentiable models, DALE resolves ALE weaknesses
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DALE is faster and versatile - theory

f (xs) = ∆x
kx∑
k

1

|Sk |
∑

i :x i∈Sk

[
∂f

∂xs
(x is , x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

Faster
▶ gradients wrt all features ∇x f (x i ) in a single pass
▶ auto-differentiation must be available (deep learning)

Versatile
▶ Change bin limits, with near zero computational cost

DALE is faster and allows redefining bin-limits
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DALE is faster and versatile - Experiments
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Figure: Light setup; small dataset (N = 102 instances), light f . Heavy setup; big
dataset (N = 105 instances), heavy f

DALE considerably accelerates the estimation
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DALE uses on-distribution samples - Theory

f (xs) =
kx∑
k

1

|Sk |
∑

i :x i∈Sk

[
∂f

∂xs
(x is , x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

point effect independent of bin limits
▶ ∂f

∂xs
(x is , x i

c) computed on real instances x i = (x is , x i
c)

bin limits affect only the resolution of the plot
▶ wide bins → low resolution plot, bin estimation from more points
▶ narrow bins → high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances
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DALE uses on-distribution samples - Experiments

f (x1, x2, x3) = x1x2 + x1x3 ± g(x)

x1 ∈ [0, 10], x2 ∼ x1+ϵ, x3 ∼ N (0, σ2)

fALE(x1) =
x21
2

point effects affected by (x1x3)
(σ is large)

bin estimation is noisy (samples
are few)
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Intuition: we need wider bins (more samples per bin)
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DALE vs ALE - 40 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 40 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 20 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 20 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 10 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: starts being OOD, noisy bin effect → poor estimation
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DALE vs ALE - 10 Bins
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DALE: on-distribution, noisy bin effect → poor estimation

ALE: starts being OOD, noisy bin effect → poor estimation
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DALE vs ALE - 5 Bins
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DALE: on-distribution, robust bin effect → good estimation

ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 5 Bins
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DALE: on-distribution, robust bin effect → good estimation

ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 3 Bins
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DALE: on-distribution, robust bin effect → good estimation

ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 3 Bins
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DALE: on-distribution, robust bin effect → good estimation

ALE: completely OOD, robust bin effect → poor estimation
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Future Ideas (1)

PDPs use ICE plots, for exhibiting heterogeneity

Figure: PDP plot, taken from Goldstein et. al

Interpretation? Maybe y ⊥⊥ x2
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https://arxiv.org/abs/1309.6392


Future Ideas (2)

PDPs use ICE plots, for exhibiting heterogeneity

Figure: PDP-ICE plot, taken from Goldstein et. al

Interpretation now? Maybe y ≈ ±6x2 depending on a condition
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https://arxiv.org/abs/1309.6392


Future Ideas (3)

Could ALE plots do the same?

Variance inside each bin?

Figure: (Left) PDP-ICE (Right) ALE with heterogeneity
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Future Ideas (4) - Regional Effect plots

Heterogeneity → subspaces with homogeneous effects

Figure: REPID: Regional Effect plots, taken from Herbinger et. al

Same idea on ALE?
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https://arxiv.org/abs/2202.07254


Thank you

Questions?
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