RHALE: Robust and Heterogeneity-aware Accumulated Local Effects (Supplementary Material)

September 20, 2023

A Theoretical Evidence

In this Section, we provide proofs for the equations used in the main paper.

A. 1 Proof that $\hat{\mu}\left(z_{1}, z_{2}\right)$ is an unbiased estimator of $\mu\left(z_{1}, z_{2}\right)$

This proof is required for Theorem 1 (Section A.2). We want to show that

$$
\hat{\mu}\left(z_{1}, z_{2}\right)=\frac{1}{|\mathcal{S}|} \sum_{i: \mathbf{x}^{i} \in \mathcal{S}} f^{s}\left(\mathbf{x}^{i}\right)
$$

is an unbiased estimator of:

$$
\mu\left(z_{1}, z_{2}\right)=\frac{\int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[f^{s}\left(z, X_{c}\right)\right] \partial z}{z_{2}-z_{1}}
$$

under the assumptions that (a) z follows a uniform distribution in $\left[z_{1}, z_{2}\right]$, i.e., $z \sim \mathcal{U}\left(z_{1}, z_{2}\right)$, (b) \tilde{X} is a random variable with $\operatorname{PDF} p(\tilde{\mathbf{x}})=p\left(\mathbf{x}_{\mathbf{c}} \mid z\right) p(z)=\frac{1}{z_{2}-z_{1}} p\left(\mathbf{x}_{\mathbf{c}} \mid z\right)$ and (c) the points \mathbf{x}^{i} are i.i.d. samples from $p(\tilde{\mathbf{x}})$. We want to show that $\mathbb{E}_{\tilde{X}}\left[\hat{\mu}\left(z_{1}, z_{2}\right)\right]=\mu\left(z_{1}, z_{1}\right)$.

Proof Description We show that (a) $\mu\left(z_{1}, z_{2}\right)=\mathbb{E}_{\tilde{X}}\left[f^{s}(\tilde{X})\right]$ and we use the fact that (b) the population mean is an unbiased estimator of the expected value.

Proof

$$
\begin{equation*}
\mu\left(z_{1}, z_{2}\right)=\frac{\int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[f^{s}\left(z, X_{c}\right)\right] \partial z}{z_{2}-z_{1}}=\mathbb{E}_{z \sim \mathcal{U}\left(z_{1}, z_{2}\right)}\left[\mathbb{E}_{X_{c} \mid z}\left[f^{s}\left(z, X_{c}\right)\right]\right]=\mathbb{E}_{\tilde{X}}\left[f^{s}(\tilde{X})\right]=\mathbb{E}_{\tilde{X}}\left[\hat{\mu}\left(z_{1}, z_{2}\right)\right] \tag{1}
\end{equation*}
$$

A. 2 Proof that $\hat{\sigma}^{2}\left(z_{1}, z_{2}\right)$ is an unbiased estimator of $\sigma_{*}^{2}\left(z_{1}, z_{2}\right)$

This equation is used in Section 3.1 of the main paper. We want to show that

$$
\hat{\sigma}^{2}\left(z_{1}, z_{2}\right)=\frac{1}{\left|\mathcal{S}_{k}-1\right|} \sum_{i: \mathbf{x}^{i} \in \mathcal{S}_{k}}\left(f^{s}\left(\mathbf{x}^{i}\right)-\hat{\mu}\left(z_{1}, z_{2}\right)\right)^{2}
$$

is an unbiased estimator of

$$
\sigma_{*}^{2}\left(z_{1}, z_{2}\right)=\frac{\int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid X_{s}=z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu\left(z_{1}, z_{2}\right)\right)^{2}\right] \partial z}{z_{2}-z_{1}}
$$

under the $_{\tilde{X}}$ assumptions that (a) z follows a uniform distribution in $\left[z_{1}, z_{2}\right]$, i.e., $z \sim \mathcal{U}\left(z_{1}, z_{2}\right)$, (b) \tilde{X} is a random variable with PDF $p(\tilde{\mathbf{x}})=p\left(\mathbf{x}_{\mathbf{c}} \mid z\right) p(z)=\frac{1}{z_{2}-z_{1}} p\left(\mathbf{x}_{\mathbf{c}} \mid z\right)$ and (c) the points \mathbf{x} are i.i.d. samples from $p(\tilde{\mathbf{x}})$. We want to show that $\mathbb{E}_{\tilde{X}}\left[\hat{\sigma}^{2}\left(z_{1}, z_{2}\right)\right]=\sigma_{*}^{2}\left(z_{1}, z_{1}\right)$.

Proof Description We show (a) that $\sigma_{*}^{2}\left(z_{1}, z_{2}\right)=\mathbb{E}_{\tilde{X}}\left[\left(f^{s}(\tilde{X})-\mathbb{E}_{\tilde{X}}\left[\hat{\mu}\left(z_{1}, z_{2}\right)\right]\right)^{2}\right]$ and then (b) we use the fact that the sample variance is an unbiased estimator of the distribution variance.

Proof

$$
\begin{align*}
\sigma_{*}^{2}\left(z_{1}, z_{2}\right) & =\frac{\int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu\left(z_{1}, z_{2}\right)\right)^{2}\right] \partial z}{z_{2}-z_{1}} \tag{2}\\
& =\mathbb{E}_{z \sim \mathcal{U}\left(z_{1}, z_{2}\right)} \mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu\left(z_{1}, z_{2}\right)\right)^{2}\right] \tag{3}\\
& =\mathbb{E}_{\tilde{X}}\left[\left(f^{s}(\tilde{X})-\mu\left(z_{1}, z_{2}\right)\right)^{2}\right] \tag{4}\\
& =\mathbb{E}_{\tilde{X}}\left[\left(f^{s}(\tilde{X})-\mathbb{E}_{\tilde{X}}\left[\hat{\mu}\left(z_{1}, z_{2}\right)\right]\right)^{2}\right] \tag{5}\\
& =\mathbb{E}_{\tilde{X}}\left[\hat{\sigma}^{2}\left(z_{1}, z_{2}\right)\right] \tag{6}
\end{align*}
$$

A. 3 Proof Of Theorem 1

Theorem 3.1 If we define (a) the residual $\rho(z)$ as the difference between the expected effect at z and the bin effect, i.e, $\rho(z)=\mu(z)-\mu\left(z_{1}, z_{2}\right)$, and (b) $\mathcal{E}\left(z_{1}, z_{2}\right)$ as the mean squared residual of the bin, i.e., $\mathcal{E}\left(z_{1}, z_{2}\right)=\frac{\int_{z_{1}}^{z_{2}} \rho^{2}(z) \partial z}{z_{2}-z_{1}}$, then it holds

$$
\begin{equation*}
\sigma_{*}^{2}\left(z_{1}, z_{2}\right)=\sigma^{2}\left(z_{1}, z_{2}\right)+\mathcal{E}^{2}\left(z_{1}, z_{2}\right) \tag{7}
\end{equation*}
$$

We want to show that $\sigma_{*}^{2}\left(z_{1}, z_{2}\right)=\sigma^{2}\left(z_{1}, z_{2}\right)+\mathcal{E}^{2}\left(z_{1}, z_{2}\right)$, where (a) the bin-error $\mathcal{E}^{2}\left(z_{1}, z_{2}\right)$ is the mean squared residual of the bin, i.e. $\mathcal{E}^{2}\left(z_{1}, z_{2}\right)=\frac{\int_{z_{1}}^{z_{1}} \rho^{2}(z) \partial z}{z_{2}-z_{1}}$ and (b) the residual $\rho(z)$ is the difference between the expected effect at z and the bin effect, i.e $\rho(z)=\mu(z)-\mu\left(z_{1}, z_{2}\right)$.

Proof Description We use that $\forall z \in\left[z_{1}, z_{2}\right]$, it holds that $\mu\left(z_{1}, z_{2}\right)=\mu(z)-\rho(z)$ and then we split the terms appropriately to complete the proof.

Proof

$$
\begin{align*}
& \sigma_{*}^{2}\left(z_{1}, z_{2}\right)=\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu\left(z_{1}, z_{2}\right)\right)^{2}\right] \partial z \tag{8}\\
& =\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu(z)+\rho(z)\right)^{2}\right] \partial z \tag{9}\\
& =\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}} \mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu(z)\right)^{2}+\rho(z)^{2}+2\left(f^{s}\left(z, X_{c}\right)-\mu(z)\right) \rho(z)\right] \partial z \tag{10}\\
& =\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}}(\underbrace{\mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)-\mu(z)\right)^{2}\right]}_{\sigma^{2}(z)}+\underbrace{\mathbb{E}_{X_{c} \mid z}\left[\rho^{2}(z)\right]}_{\rho^{2}(z)}+2(\underbrace{\mathbb{E}_{X_{c} \mid z}\left[\left(f^{s}\left(z, X_{c}\right)\right]\right.}_{\mu(z)}-\mu(z)) \rho(z))) \partial z \tag{11}\\
& =\underbrace{\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}} \sigma^{2}(z) \partial z}_{\sigma^{2}\left(z_{1}, z_{2}\right)}+\underbrace{\frac{1}{z_{2}-z_{1}} \int_{z_{1}}^{z_{2}} \rho^{2}(z) \partial z}_{\mathcal{E}^{2}\left(z_{1}, z_{2}\right)} \tag{12}\\
& =\sigma^{2}\left(z_{1}, z_{2}\right)+\mathcal{E}^{2}\left(z_{1}, z_{2}\right) \tag{13}
\end{align*}
$$

A. 4 Proof Of Corollary 2

We want to show that, if a bin-splitting \mathcal{Z} minimizes the accumulated error, then it also minimizes $\sum_{k=1}^{K} \sigma_{*}^{2}\left(z_{1}, z_{2}\right) \Delta z_{k}$. In mathematical terms, we want to show that:

$$
\mathcal{Z}^{*}=\arg \min _{\mathcal{Z}} \sum_{k=1}^{K} \sigma_{*}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k} \Leftrightarrow \mathcal{Z}^{*}=\arg \min _{\mathcal{Z}} \sum_{k=1}^{K} \mathcal{E}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k}
$$

Proof Description The key-point for the proof is that the term $\sum_{k=1}^{K} \sigma^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k}$ is independent of the bin partitioning \mathcal{Z}. In Eq.(16) we use Eq. 8 of the main paper.

Proof

$$
\begin{align*}
\mathcal{Z}^{*} & =\arg \min _{\mathcal{Z}} \sum_{k=1}^{K} \sigma_{*}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k} \tag{14}\\
& =\arg \min _{\mathcal{Z}}\left[\sum_{k=1}^{K}\left(\sigma^{2}\left(z_{k-1}, z_{k}\right)+\mathcal{E}^{2}\left(z_{k-1}, z_{k}\right)\right) \Delta z_{k}\right] \tag{15}\\
& =\arg \min _{\mathcal{Z}}\left[\sum_{k=1}^{K}\left(\frac{\Delta z_{k}}{\Delta z_{k}} \int_{z_{k-1}}^{z_{k}} \sigma^{2}(z) \partial z+\mathcal{E}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k}\right)\right] \tag{16}\\
& =\arg \min _{\mathcal{Z}}[\underbrace{\int_{z_{0}}^{z_{K}} \sigma^{2}(z) \partial z}_{\text {independent of } \mathcal{Z}}+\sum_{k=1}^{K} \mathcal{E}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k})] \tag{17}\\
& =\arg \min _{\mathcal{Z}} \sum_{k=1}^{K} \mathcal{E}^{2}\left(z_{k-1}, z_{k}\right) \Delta z_{k} \tag{18}
\end{align*}
$$

A. 5 Dynamic Programming

We denote with $i \in\left\{0, \ldots, K_{\max }\right\}$ the index of point x_{i}, as defined at Section 3.2 of the main paper, and with z_{j} and z_{j+1} the chosen limits (out of the values x_{i}) for bin j. The states of the problem are then represented by matrices $\mathcal{C}(i, j)$ and $\mathcal{I}(i, j) . \mathcal{C}(i, j)$ is the cost of setting $z_{j+1}=x_{i}$, i.e., the cost of setting the right limit of the j-th bin to x_{i}, and is computed by the recursive function:

$$
\mathcal{C}(i, j)= \begin{cases}\min _{i \in\left\{0, \ldots, K_{\max }\right\}}[C(i, j-1)+\mathcal{B}(i, j)], & \text { if } j>0 \tag{19}\\ \mathcal{B}(i, j) & \text { if } j=0\end{cases}
$$

$\mathcal{I}(i, j)$ is an index matrix indicating the selected values z_{j}, i.e., the values indicating the right limit of $j-1$ bins. In other words, $z_{j}=x_{\mathcal{I}(i, j)}$. The value of $\mathcal{I}(i, j)$ is given by $\mathcal{I}(i, j)=$ $\operatorname{argmin}_{i \in\left\{0, \ldots, K_{\max }\right\}}[C(i, j-1)+\mathcal{B}(i, j)]$. Note that although this procedures always selects $K_{\max }+$ 1 values for z_{j}, some of them may be the same point corresponding to zero-width bins. These are dropped when choosing the optimal bin limits \mathcal{Z}. Algorithm 1 presents the use of dynamic programming to solve the optimization problem of Eq.13.

B Empirical Evaluation

B. 1 Running Example

In the running example, the data generating distribution is $p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}\right)$, where $p\left(x_{1}\right)=$ $\frac{5}{6} \mathcal{U}\left(x_{1} ;-0.5,0\right)+\frac{1}{6} \mathcal{U}\left(x_{1} ; 0,0.5\right), p\left(x_{2}\right)=\mathcal{N}\left(x_{2} ; \mu_{2}=0, \sigma_{2}=2\right)$ and $p\left(x_{3}\right)=\mathcal{N}\left(x_{3} ; \mu_{3}=x_{1}, \sigma_{3}=\right.$ 0.01). So, x_{1} is highly correlated with x_{3}, while x_{2} is independent from both x_{1} and x_{3}. The black-box function is:

$$
\begin{equation*}
f(\mathbf{x})=\underbrace{\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}<0}\right)}_{g_{1}(\mathbf{x})}+\underbrace{x_{1} x_{2}}_{g_{2}(\mathbf{x})}+\underbrace{x_{2}}_{g_{3}(\mathbf{x})} \tag{20}
\end{equation*}
$$

```
Algorithm 1 Algorithm for solving the optimization problem with dynamic programming
Input: \(\mathcal{B}(i, j)\) : function that gives the cost of bin \(\left[x_{i}, x_{j}\right), K_{\text {max }}\) : max number of bins
Output: \(\mathcal{Z}\) : the optimal partitioning
    \(\mathcal{C}(i, j)=+\infty, \forall i, j \quad \triangleright\) Initiate the cost matrix with \(+\infty\)
    \(\mathcal{I}(i, j)=0, \forall i, j \quad \triangleright\) Initiate the index matrix with 0
    \(\mathcal{C}(i, 0)=\mathcal{B}(0, i) \forall i\)
                                    \(\triangleright\) Set cost of the first bin
    for \(j=0, \ldots, K_{\max }-1\) do
        for \(i=0, \ldots, K_{\max }\) do
            for \(k=0, \ldots, K_{\text {max }}\) do
                \(L(k)=\mathcal{C}(k, j-1)+\mathcal{B}(k, j)\)
            end for
            \(\mathcal{C}(i, j)=\min _{k} L(k)\)
            \(\mathcal{I}(i, j)=\arg \min _{k} L(k)\)
        end for
    end for
    \(Z(j)=0 \forall j=\left\{0, \ldots, K_{\max }\right\} \quad \triangleright\) Initialize list with limits
    \(Z(0)=0, Z\left(K_{\max }\right)=K_{\max }, \quad \triangleright\) First and last limit are always the same
    for \(j=K_{\max }-1, \ldots, 1\) do
        \(Z(j)=\mathcal{I}(j, Z(j+1)) \quad \triangleright\) Follow the inverse indexes
    end for
    Invert \(Z\) and drop \(Z\) items that show to the same point
    \(\mathcal{Z} \leftarrow x_{\min }+Z(j) \Delta X_{\min } \quad \triangleright\) Convert indexes to points
```

Ground truth effect. For $g_{1}(\mathbf{x}), x_{1} \approx x_{3}$ so $\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}<0}=-\mathbb{1}_{x_{1}<0}$ and therefore $g_{1}\left(x_{1}\right)=$ $-\sin \left(2 \pi x_{1}\right) \mathbb{1}_{x_{1}<0}$. For $g_{2}(\mathbf{x}), x_{2}$ is independent from x_{1}, so $\mathbb{E}_{x_{2} \mid x_{1}}\left[x_{1} x_{2}\right]=\mathbb{E}_{x_{2}}\left[x_{1} x_{2}\right]=x_{1} \mathbb{E}_{x_{2}}\left[x_{2}\right]=$ 0 and therefore $g_{2}\left(x_{1}\right)=0$. For $g_{3}(\mathbf{x})$, it does not include x_{1}, so $g_{3}\left(x_{1}\right)=0$. Therefore, the ground truth feature effect is

$$
\begin{equation*}
f^{\mathrm{GT}}\left(x_{1}\right)=-\sin \left(2 \pi x_{1}\right) \mathbb{1}_{x_{1}<0} \tag{21}
\end{equation*}
$$

Ground truth heterogeneity. For the heterogeneity, it is not easy to compute the ground truth, because each method defines and visualizes it in a different way. However, we use the fact that the heterogeneity is induced by the variability of the interaction terms. For $g_{1}(\mathbf{x}), x_{1} \approx x_{3}$ so $\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}<0}=-\mathbb{1}_{x_{1}<0}$ and therefore g_{1} does not introduce variability. The variability of $g_{3}(\mathbf{x})$ is also zero. The only term with variability is $g_{2}(\mathbf{x})=x_{1} x_{2}$. Since x_{1}, x_{2} are independent the effect of this term varies according to the variation of x_{2} that has a standard deviation of σ_{2}. Therefore, independently of how each method computes the heterogeneity, the user should be able to understand a variation of σ_{2} on the local effects.

RHALE. We compute in an analytic form the feature effect $f^{\mathrm{RHALE}}\left(x_{1}\right)$ and the heterogeneity $\sigma(z)$ for the RHALE method.

$$
\begin{align*}
& f^{\mathrm{RHALE}}\left(x_{1}\right)=\int_{x_{1, \text { min }}}^{x_{1}} \mathbb{E}_{x_{2}, x_{3} \mid z}\left[\frac{\partial f}{\partial x_{1}}\left(z, x_{2}, x_{3}\right)\right] \partial z \tag{22}\\
&=\int_{x_{1, \text { min }}}^{x_{1}}(\mathbb{E}_{x_{3} \mid z}\left[2 \pi z \cos (2 \pi z)\left(\mathbb{1}_{z<0}-2 \mathbb{1}_{x_{3}<0}\right)\right]+\underbrace{\mathbb{E}_{x_{2} \mid z}\left[x_{2}\right]}_{0}) \partial z \tag{23}\\
&=\int_{x_{1, \text { min }}}^{x_{1}} 2 \pi z \cos (2 \pi z) \mathbb{E}_{x_{3} \mid z}\left[\left(\mathbb{1}_{z<0}-2 \mathbb{1}_{x_{3}<0}\right)\right] \partial z \tag{24}\\
& \approx \int_{x_{1, \text { min }}}^{x_{1}} \underbrace{2 \pi z \cos (2 \pi z)\left(-\mathbb{1}_{z<0}\right)}_{\mu(z)} \partial z \tag{25}\\
& \approx-\sin \left(2 \pi x_{1}\right) \mathbb{1}_{x_{1}<0} \tag{26}\\
& \sigma^{2}(z)= \mathbb{E}_{x_{2}, x_{3} \mid z}\left[\left(\frac{\partial f}{x_{1}}\left(z, x_{2}, x_{3}\right)-\mu(z)\right)^{2}\right] \tag{27}\\
&= \mathbb{E}_{x_{2}, x_{3} \mid z}\left[\left(2 \pi z \cos (2 \pi z)\left(\mathbb{1}_{z<0}-2 \mathbb{1}_{x_{3}<0}\right)+x_{2}-2 \pi z \cos (2 \pi z)\left(-\mathbb{1}_{z<0}\right)\right)^{2}\right] \tag{28}\\
&= \mathbb{E}_{x_{2}, x_{3} \mid z}\left[\left(2 \pi z \cos (2 \pi z)\left(2 \mathbb{1}_{z<0}-2 \mathbb{1}_{x_{3}<0}\right)+x_{2}\right)^{2}\right] \tag{29}\\
&=(4 \pi z \cos (2 \pi z))^{2} \mathbb{E}_{x_{3} \mid z}\left[\left(\mathbb{1}_{z<0}-\mathbb{1}_{x_{3}<0}\right)^{2}\right]+\mathbb{E}_{x_{2} \mid z}\left[x_{2}^{2}\right]+\mathbb{E}_{x_{2}, x_{3} \mid z}\left[4 \pi z \cos (2 \pi z)\left(\mathbb{1}_{z<0}-\mathbb{1}_{x_{3}<0}\right) x_{2}\right] \tag{30}\\
&=(4 \pi z \cos (2 \pi z))^{2} \mathbb{E}_{x_{3} \mid z}\left[\left(\mathbb{1}_{z<0}-\mathbb{1}_{x_{3}<0}\right)^{2}\right]+\sigma_{2}^{2}+\mathbb{E}_{x_{2} \mid z}\left[x_{2}\right] \underbrace{0}_{\mathbb{E}_{x_{3} \mid z}\left[4 \pi z \operatorname { c o s } (2 \pi z) \left(\mathbb{1}_{z<0}-\mathbb{1}_{\left.\left.x_{3}<0\right)\right]}\right.\right.} \\
&=(4 \pi z \cos (2 \pi z))^{2} \mathbb{E}_{x_{3} \mid z}\left[\left(\mathbb{1}_{z<0}+\mathbb{1}_{x_{3}<0}-2 \mathbb{1}_{z<0} \mathbb{1}_{x_{3}<0}\right]+\sigma_{2}^{2}\right. \tag{31}\\
&=\left(4 \pi x_{1} \cos \left(2 \pi x_{1}\right)\right)^{2}\left(2 \mathbb{1}_{z<0}-2 \mathbb{1}_{z<0}\right)+\sigma_{2}^{2} \tag{32}\\
&= \sigma_{2}^{2} \tag{33}
\end{align*}
$$

PDP-ICE. We compute in an analytic form the feature effect $f^{\mathrm{PDP}}\left(x_{1}\right)$ and the heterogeneity heterogeneity visualized by $f^{\text {ICE }}\left(x_{1}\right)$.

The PDP effect uses

Figure 1: Feature effect of x_{1} on the example defined by Equation 20. ALE does not quantify the heterogeneity and fixed-size splitting leads to a bad estimation. PDP-ICE plots fail in both main effect and heterogeneity, failing to capture feature correlations. RHALE, on the other hand, provides a robust estimation of the main effect and the heterogeneity.

$$
\begin{align*}
f^{\mathrm{PDP}}\left(x_{1}\right) & =\mathbb{E}_{x_{2}, x_{3}}[f(\mathbf{x})] \tag{35}\\
& =\sin \left(2 \pi x_{1}\right) \mathbb{E}_{x_{3}}\left[\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}<0}\right]+\mathbb{E}_{x_{2}}\left[x_{1} x_{2}\right]+\underbrace{\mathbb{E}_{x_{2}}\left[x_{2}\right]}_{0} \tag{36}\\
& =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \mathbb{E}_{x_{3}}\left[\mathbb{1}_{x_{3}<0}\right]\right)+\underbrace{x_{1} \mathbb{E}_{x_{2}}\left[x_{2}\right]}_{0}+\underbrace{0.5}_{\mathbb{E}_{x_{2}}\left[x_{2}\right]} \tag{37}\\
& =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \int_{-0.5}^{0.5} \mathbb{1}_{x_{3}<0} p\left(x_{3}\right) \partial x_{3}\right) \tag{38}\\
& =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \int_{-0.5}^{0} 2 \frac{5}{6} \mathbb{1}_{x_{3}<0} \partial x_{3}+\int_{0}^{0.5} 2 \frac{1}{6} \mathbb{1}_{x_{3}<0} \partial x_{3}\right) \tag{39}\\
& =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \frac{5}{6}\right) \tag{40}
\end{align*}
$$

For the ICE plots:

$$
\begin{align*}
f^{\mathrm{ICE}}\left(x_{1}^{i}\right) & =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}^{i}<0}\right)+x_{1} x_{2}^{i}+x_{2}^{i} \tag{41}\\
& =\sin \left(2 \pi x_{1}\right)\left(\mathbb{1}_{x_{1}<0}-2 \mathbb{1}_{x_{3}^{i}<0}\right)+x_{1} x_{2}^{i}+c \tag{42}
\end{align*}
$$

So if $x_{3}^{i}<0$, which happens in almost $\frac{5}{6}$ of the instances, then $f^{\text {ICE }}\left(x_{1}^{i}\right)\left(x_{1}\right)=-\sin \left(2 \pi x_{1}\right)+$ $x_{1} x_{2}^{i}+c$, and in almost $\frac{1}{6}$ of the instances, $f^{\text {ICE }}\left(x_{1}^{i}\right)\left(x_{1}\right)=\sin \left(2 \pi x_{1}\right)+x_{1} x_{2}^{i}+c$.

Discussion. The derivations above are reflected in Figure 1. We observe that PDP and ICE provide misleading explanations which are not due to some approximation error, e.g., due to limited samples. As shown by Equation 35 and Equation 41 PDP and ICE systematically produce misleading explanations [Apley and Zhu, 2020] for the feature effect and the heterogeneity in cases of correlated features. In contrast, we confirm our previous knowledge that ALE handles well these cases and we observe that the deviation from the ground is only due to approximation issues, which are addressed by RHALE.

B. 2 Simulation Study

The data generating distribution is $p(\mathbf{x})=p\left(x_{3}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$, where $x_{1} \sim \mathcal{U}(0,1), x_{2}=x_{1}+\epsilon$, where $\epsilon \sim \mathcal{N}(0,0.01)$ is a small additive, noise and $x_{3} \sim \mathcal{N}\left(0, \sigma_{3}^{2}=\frac{1}{4}\right)$. The predictive function is:

$$
\begin{equation*}
f(\mathbf{x})=\underbrace{\alpha f_{2}(\mathbf{x})}_{g_{3}(\mathbf{x})}+\underbrace{f_{1}(\mathbf{x}) \mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}}_{g_{1}(\mathbf{x})}+\underbrace{\left(1-f_{1}(\mathbf{x})\right) \mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x})<1}}_{g_{2}(\mathbf{x})} \tag{43}
\end{equation*}
$$

where $f_{1}(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}$ is a linear combination of x_{1}, x_{2}, and $f_{2}(\mathbf{x})=x_{1} x_{3}$ interacts the noncorrelated features x_{1}, x_{3}. We evaluate the effect computed by RHALE and PDP-ICE in three cases; (a) without interaction $(\alpha=0)$ and equal weights $\left(a_{1}=a_{2}\right)$, (b) without interaction $(\alpha=0)$ and different weights $\left(a_{1} \neq a_{2}\right)$ and (c) with interaction $(\alpha>0)$ and equal weights ($a_{1}=a_{2}$).

Ground truth for case (a) In this case, the weights are $a_{1}=a_{2}=1$ and there is no interaction term $\alpha=0$). Therefore:

$$
\begin{equation*}
f(\mathbf{x})=f_{1}(\mathbf{x}) \mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}+\left(1-f_{1}(\mathbf{x})\right) \mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x})<1} \tag{44}
\end{equation*}
$$

where $f_{1}(\mathbf{x})=x_{1}+x_{2}$. For the ground truth feature effect, we use the fact that $x_{1} \approx x_{2}$, therefore knowing only the value of x_{1} we can automatically infer the value of x_{2} and therefore the value of $f_{1}(\mathbf{x})$. For example, when $0 \leq x_{1} \leq \frac{1}{4}$ then $0 \leq f_{1}(\mathbf{x}) \leq \frac{1}{2}$ and, therefore, $f_{1}\left(x_{1}\right)=a_{1} x_{1}$. In a similar way, we compute the effect of x_{2}. The effect of x_{3} is zero.

$$
\begin{align*}
& f^{\mathrm{GT}}\left(x_{1}\right)=x_{1} \mathbb{1}_{0 \leq x_{1} \leq \frac{1}{4}}+\left(\frac{1}{4}-x_{1}\right) \mathbb{1}_{\frac{1}{4}<x_{1}<\frac{1}{2}} \tag{45}\\
& f^{\mathrm{GT}}\left(x_{2}\right)=x_{2} \mathbb{1}_{0 \leq x_{2} \leq \frac{1}{4}}+\left(\frac{1}{4}-x_{2}\right) \mathbb{1}_{\frac{1}{4}<x_{2}<\frac{1}{2}} \tag{46}\\
& f^{\mathrm{GT}}\left(x_{3}\right)=0 \tag{47}
\end{align*}
$$

The heterogeneity is zero for all features because the heterogeneity is induced by the variability of the interaction terms and, since, $x_{1} \approx x_{2}$, the terms $\mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}$ and $\mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x}) \leq 1}$, do not vary.

Ground truth for case (b) In this case, the weights are $a_{1}=2$ and $a_{2}=\frac{1}{2}$ and there is no interaction term $\alpha=0$. Therefore:

$$
\begin{equation*}
f(\mathbf{x})=f_{1}(\mathbf{x}) \mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}+\left(1-f_{1}(\mathbf{x})\right) \mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x})<1} \tag{48}
\end{equation*}
$$

where $f_{1}(\mathbf{x})=2 x_{1}+\frac{1}{2} x_{2}$. As in case (a), we use again the fact that $x_{1} \approx x_{2}$, to compute the ground truth feature effect:

$$
\begin{align*}
& f^{\mathrm{GT}}\left(x_{1}\right)=2 x_{1} \mathbb{1}_{0 \leq x_{1} \leq \frac{1}{5}}+\left(\frac{2}{5}-2 x_{1}\right) \mathbb{1}_{\frac{1}{4}<x_{1}<\frac{2}{5}} \tag{49}\\
& f^{\mathrm{GT}}\left(x_{2}\right)=2 x_{2} \mathbb{1}_{0 \leq x_{2} \leq \frac{1}{5}}+\left(\frac{2}{5}-2 x_{2}\right) \mathbb{1}_{\frac{1}{4}<x_{2}<\frac{2}{5}} \tag{50}\\
& f^{\mathrm{GT}}\left(x_{3}\right)=0 \tag{51}
\end{align*}
$$

The heterogeneity is zero for all features because the heterogeneity is induced by the variability of the interaction terms and, since, $x_{1} \approx x_{2}$, the terms $\mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}$ and $\mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x}) \leq 1}$, do not vary.

Figure 2: Case (a)

Figure 3: Case (b)

Figure 4: Case (b)

Ground truth for case (c) In this case, the weights are equal $a_{1}=a_{2}=1$ and the is interaction term is enabled $(\alpha=1)$. Therefore:

$$
\begin{equation*}
f(\mathbf{x})=f_{2}(\mathbf{x})+f_{1}(\mathbf{x}) \mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}+\left(1-f_{1}(\mathbf{x})\right) \mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x})<1} \tag{52}
\end{equation*}
$$

where $f_{2}(\mathbf{x})=x_{1} x_{3}$ and $f_{1}(\mathbf{x})=x_{1}+x_{2}$. The feature effect of terms $f_{1}(\mathbf{x}) \mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}+(1-$ $\left.f_{1}(\mathbf{x})\right) \mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x})<1}$ are exactly the same with case (a). The term $f_{2}(\mathbf{x})=x_{1} x_{2}$. For feature x_{1} the effect is $\mathbb{E}_{x_{3} \mid x_{1}}\left[x_{1} x_{3}\right]=x_{1} \mathbb{E}_{x_{3}}\left[x_{3}\right]=0$ and for feature x_{2} the effect is $\mathbb{E}_{x_{1} \mid x_{3}}\left[x_{1} x_{3}\right]=x_{3} \mathbb{E}_{x_{1}}\left[x_{1}\right]=0.5 x_{3}$. Therefore, the ground truth feature effect is:

$$
\begin{align*}
& f^{\mathrm{GT}}\left(x_{1}\right)=x_{1} \mathbb{1}_{0 \leq x_{1} \leq \frac{1}{4}}+\left(\frac{1}{4}-x_{1}\right) \mathbb{1}_{\frac{1}{4}<x_{1}<\frac{1}{2}} \tag{53}\\
& f^{\mathrm{GT}}\left(x_{2}\right)=x_{2} \mathbb{1}_{0 \leq x_{2} \leq \frac{1}{4}}+\left(\frac{1}{4}-x_{2}\right) \mathbb{1}_{\frac{1}{4}<x_{2}<\frac{1}{2}} \tag{54}\\
& f^{\mathrm{GT}}\left(x_{3}\right)=\frac{1}{2} x_{3} \tag{55}
\end{align*}
$$

For the same reason with cases (a) and (b), the terms $\mathbb{1}_{f_{1}(\mathbf{x}) \leq \frac{1}{2}}$ and $\mathbb{1}_{\frac{1}{2}<f_{1}(\mathbf{x}) \leq 1}$, do not introduce heterogeneity. Since x_{1}, x_{2} are independent the effect of $x_{1} x_{3}$ varies. For feature x_{1}, it varies following the standard deviation of x_{3}, i.e. $\sigma_{3}=\frac{1}{2}$ and for feature x_{3}, it varies following the standard deviation of x_{1}, i.e. $\sigma_{1}=\frac{1}{4}$.

Conclusion. The example confirms our previous knowledge that PDP-ICE provide erroneous effects in cases with correlated features. The feature effect computed by PDP and the heterogeneity illustrated by ICE are correct only for feature x_{3}, because it is independent from the other features. For features the correlated features x_{1}, x_{2}, both PDP and ICE provide misleading explanations. In contrast, RHALE handles well all cases, providing accurate estimations for the feature effects and the heterogeneity.

Table 1: Description of the features apparent in the California-Housing Dataset

	Description	\min	\max	μ	σ
x_{1}	longitude	-124.35	-114.31	-119.58	2
x_{2}	latitude	32.54	41.95	35.65	2.14
x_{3}	median age of houses	1	52	29.01	12.42
x_{4}	total number of rooms	2	9179	2390.79	1433.83
x_{5}	total number of bedrooms	2	1797	493.86	291
x_{6}	total number of people	3	4818	1310.91	771.78
x_{7}	total number of households	2	1644	460.3	267.34
x_{8}	median income of households	0.5	9.56	3.72	1.60
y	median house value	14.999	500000	206864.41	115435.67

B. 3 Real World Experiment

In this section, we provide further details on the real-world example. The real-world example uses the California Housing Dataset, which contains 8 numerical features. We exclude instances with missing or outlier values. If we denote as $\mu_{s}\left(\sigma_{s}\right)$ the average value (standard deviation) of the s-th feature, we consider outliers the instances of the training set with any feature value over three standard deviations from the mean, i.e. $\left|x_{s}^{i}-\mu_{s}\right|>\sigma_{s}$. This preprocessing step discards 884 instances, and $N=19549$ remain. We provide their description with some basic descriptive statistics in Table 1 and their histogram in Figure 5.

In Figure 7 of the main paper, we provided the RHALE vs PDP-ICE plots for features x_{2} (latitude), x_{6} (total number of people) and x_{8} (median house value). In figure 8 , we compared RHALE with fixed-size approximation, for the same features. In Figure 6, we provide the same information for the rest of the features; x_{1} (longitude), x_{3} (median age of houses), x_{4} (total number of rooms), x_{5} (total number of bedrooms) and x_{7} (total number of households). The observation of these features leads us to similar conclusion. First, RHALE and PDP-ICE plots compute similar effects and level of heterogeneity and RHALE's approximation is (almost) as good as the best fixedsize approximation. More specifically, we observe that RHALE's variable size bin splitting correctly creates wide bins for features $x_{3}, x_{4}, x_{5}, x_{7}$, where the feature effect plot is (piecewise) linear, while using narrow bins for feature x_{2} where the feature effect is not linear.

References

Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82 (4):1059-1086, 2020.

Figure 5: The Histogram of each feature in the California Housing Dataset.

Figure 6: From left to right: (a) RHALE plot, (b) PDP-ICE plot, (c) RHALE vs fixed-size \mathcal{L}^{μ} and (d) RHALE vs fixed-size \mathcal{L}^{σ}. From top to bottom, features $x_{1}, x_{3}, x_{4}, x_{5}, x_{7}, x_{8}$.

