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A Theoretical Evidence

In this Section, we provide proofs for the equations used in the main paper.

A.1 Proof that µ̂(z1, z2) is an unbiased estimator of µ(z1, z2)

This proof is required for Theorem 1 (Section A.2). We want to show that

µ̂(z1, z2) =
1

|S|
∑

i:xi∈S

fs(xi)

is an unbiased estimator of:

µ(z1, z2) =

∫ z2
z1

EXc|z [f
s(z,Xc)] ∂z

z2 − z1

under the assumptions that (a) z follows a uniform distribution in [z1, z2], i.e., z ∼ U(z1, z2), (b) X̃
is a random variable with PDF p(x̃) = p(xc|z)p(z) = 1

z2−z1
p(xc|z) and (c) the points xi are i.i.d.

samples from p(x̃). We want to show that EX̃ [µ̂(z1, z2)] = µ(z1, z1).

Proof Description We show that (a) µ(z1, z2) = EX̃ [fs(X̃)] and we use the fact that (b) the
population mean is an unbiased estimator of the expected value.

Proof

µ(z1, z2) =

∫ z2
z1

EXc|z[f
s(z,Xc)]∂z

z2 − z1
= Ez∼U(z1,z2)[EXc|z[f

s(z,Xc)]] = EX̃ [fs(X̃)] = EX̃ [µ̂(z1, z2)]

(1)

A.2 Proof that σ̂2(z1, z2) is an unbiased estimator of σ2
∗(z1, z2)

This equation is used in Section 3.1 of the main paper. We want to show that
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σ̂2(z1, z2) =
1

|Sk − 1|
∑

i:xi∈Sk

(
fs(xi)− µ̂(z1, z2)

)2
is an unbiased estimator of

σ2
∗(z1, z2) =

∫ z2
z1

EXc|Xs=z

[
(fs(z,Xc)− µ(z1, z2))

2
]
∂z

z2 − z1

under the assumptions that (a) z follows a uniform distribution in [z1, z2], i.e., z ∼ U(z1, z2), (b)
X̃ is a random variable with PDF p(x̃) = p(xc|z)p(z) = 1

z2−z1
p(xc|z) and (c) the points x are i.i.d.

samples from p(x̃). We want to show that EX̃ [σ̂2(z1, z2)] = σ2
∗(z1, z1).

Proof Description We show (a) that σ2
∗(z1, z2) = EX̃

[
(fs(X̃)− EX̃ [µ̂(z1, z2)])

2
]
and then (b)

we use the fact that the sample variance is an unbiased estimator of the distribution variance.

Proof

σ2
∗(z1, z2) =

∫ z2
z1

EXc|z
[
(fs(z,Xc)− µ(z1, z2))

2
]
∂z

z2 − z1
(2)

= Ez∼U(z1,z2)EXc|z
[
(fs(z,Xc)− µ(z1, z2))

2
]

(3)

= EX̃

[
(fs(X̃)− µ(z1, z2))

2
]

(4)

= EX̃

[
(fs(X̃)− EX̃ [µ̂(z1, z2)])

2
]

(5)

= EX̃

[
σ̂2(z1, z2)

]
(6)

A.3 Proof Of Theorem 1

Theorem 3.1 If we define (a) the residual ρ(z) as the difference between the expected effect at z
and the bin effect, i.e, ρ(z) = µ(z)− µ(z1, z2), and (b) E(z1, z2) as the mean squared residual of the

bin, i.e., E(z1, z2) =
∫ z2
z1

ρ2(z)∂z

z2−z1
, then it holds

σ2
∗(z1, z2) = σ2(z1, z2) + E2(z1, z2) (7)

We want to show that σ2
∗(z1, z2) = σ2(z1, z2) + E2(z1, z2), where (a) the bin-error E2(z1, z2) is

the mean squared residual of the bin, i.e. E2(z1, z2) =

∫ z2
z1

ρ2(z)∂z

z2−z1
and (b) the residual ρ(z) is the

difference between the expected effect at z and the bin effect, i.e ρ(z) = µ(z)− µ(z1, z2).

Proof Description We use that ∀z ∈ [z1, z2], it holds that µ(z1, z2) = µ(z) − ρ(z) and then we
split the terms appropriately to complete the proof.
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Proof

σ2
∗(z1, z2) =

1

z2 − z1

∫ z2

z1

EXc|z

[
(fs(z,Xc)− µ(z1, z2))

2
]
∂z (8)

=
1

z2 − z1

∫ z2

z1

EXc|z

[
(fs(z,Xc)− µ(z) + ρ(z))

2
]
∂z (9)

=
1

z2 − z1

∫ z2

z1

EXc|z
[
(fs(z,Xc)− µ(z))2 + ρ(z)2 + 2(fs(z,Xc)− µ(z))ρ(z)

]
∂z (10)

=
1

z2 − z1

∫ z2

z1

EXc|z
[
(fs(z,Xc)− µ(z))2

]︸ ︷︷ ︸
σ2(z)

+EXc|z
[
ρ2(z)

]︸ ︷︷ ︸
ρ2(z)

+2(EXc|z [(f
s(z,Xc)]︸ ︷︷ ︸

µ(z)

−µ(z))ρ(z))

 ∂z

(11)

=
1

z2 − z1

∫ z2

z1

σ2(z)∂z︸ ︷︷ ︸
σ2(z1,z2)

+
1

z2 − z1

∫ z2

z1

ρ2(z)∂z︸ ︷︷ ︸
E2(z1,z2)

(12)

= σ2(z1, z2) + E2(z1, z2) (13)

A.4 Proof Of Corollary 2

We want to show that, if a bin-splitting Z minimizes the accumulated error, then it also minimizes∑K
k=1 σ

2
∗(z1, z2)∆zk. In mathematical terms, we want to show that:

Z∗ = argminZ

K∑
k=1

σ2
∗(zk−1, zk)∆zk ⇔ Z∗ = argminZ

K∑
k=1

E2(zk−1, zk)∆zk

Proof Description The key-point for the proof is that the term
∑K

k=1 σ
2(zk−1, zk)∆zk is inde-

pendent of the bin partitioning Z. In Eq.(16) we use Eq.8 of the main paper.
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Proof

Z∗ = argminZ

K∑
k=1

σ2
∗(zk−1, zk)∆zk (14)

= argminZ

[
K∑

k=1

(σ2(zk−1, zk) + E2(zk−1, zk))∆zk

]
(15)

= argminZ

[
K∑

k=1

(
∆zk
∆zk

∫ zk

zk−1

σ2(z)∂z + E2(zk−1, zk)∆zk

)]
(16)

= argminZ


∫ zK

z0

σ2(z)∂z︸ ︷︷ ︸
independent of Z

+

K∑
k=1

E2(zk−1, zk)∆zk)

 (17)

= argminZ

K∑
k=1

E2(zk−1, zk)∆zk (18)

A.5 Dynamic Programming

We denote with i ∈ {0, . . . ,Kmax} the index of point xi, as defined at Section 3.2 of the main paper,
and with zj and zj+1 the chosen limits (out of the values xi) for bin j. The states of the problem
are then represented by matrices C(i, j) and I(i, j). C(i, j) is the cost of setting zj+1 = xi, i.e., the
cost of setting the right limit of the j-th bin to xi, and is computed by the recursive function:

C(i, j) =

{
mini∈{0,...,Kmax} [C(i, j − 1) + B(i, j)] , if j > 0

B(i, j) if j = 0
(19)

I(i, j) is an index matrix indicating the selected values zj , i.e., the values indicating the right
limit of j − 1 bins. In other words, zj = xI(i,j). The value of I(i, j) is given by I(i, j) =
argmini∈{0,...,Kmax} [C(i, j − 1) + B(i, j)]. Note that although this procedures always selects Kmax+
1 values for zj , some of them may be the same point corresponding to zero-width bins. These are
dropped when choosing the optimal bin limits Z. Algorithm 1 presents the use of dynamic program-
ming to solve the optimization problem of Eq.13.

B Empirical Evaluation

B.1 Running Example

In the running example, the data generating distribution is p(x) = p(x1)p(x2)p(x3|x1), where p(x1) =
5
6U(x1;−0.5, 0) + 1

6U(x1; 0, 0.5), p(x2) = N (x2;µ2 = 0, σ2 = 2) and p(x3) = N (x3;µ3 = x1, σ3 =
0.01). So, x1 is highly correlated with x3, while x2 is independent from both x1 and x3. The
black-box function is:

f(x) = sin(2πx1)(1x1<0 − 21x3<0)︸ ︷︷ ︸
g1(x)

+x1x2︸︷︷︸
g2(x)

+ x2︸︷︷︸
g3(x)

(20)

4



Algorithm 1 Algorithm for solving the optimization problem with dynamic programming

Input: B(i, j): function that gives the cost of bin [xi, xj), Kmax: max number of bins
Output: Z: the optimal partitioning
C(i, j) = +∞,∀i, j ▷ Initiate the cost matrix with +∞
I(i, j) = 0,∀i, j ▷ Initiate the index matrix with 0
C(i, 0) = B(0, i)∀i ▷ Set cost of the first bin
for j = 0, . . . ,Kmax − 1 do

for i = 0, . . . ,Kmax do
for k = 0, . . . ,Kmax do

L(k) = C(k, j − 1) + B(k, j)
end for
C(i, j) = mink L(k)
I(i, j) = argminkL(k)

end for
end for
Z(j) = 0∀j = {0, . . . ,Kmax} ▷ Initialize list with limits
Z(0) = 0, Z(Kmax) = Kmax, ▷ First and last limit are always the same
for j = Kmax − 1, . . . , 1 do

Z(j) = I(j, Z(j + 1)) ▷ Follow the inverse indexes
end for
Invert Z and drop Z items that show to the same point
Z ← xmin + Z(j)∆Xmin ▷ Convert indexes to points

Ground truth effect. For g1(x), x1 ≈ x3 so 1x1<0 − 21x3<0 = −1x1<0 and therefore g1(x1) =
− sin(2πx1)1x1<0. For g2(x), x2 is independent from x1, so Ex2|x1

[x1x2] = Ex2
[x1x2] = x1Ex2

[x2] =
0 and therefore g2(x1) = 0. For g3(x), it does not include x1, so g3(x1) = 0. Therefore, the ground
truth feature effect is

fGT(x1) = − sin(2πx1)1x1<0 (21)

Ground truth heterogeneity. For the heterogeneity, it is not easy to compute the ground truth,
because each method defines and visualizes it in a different way. However, we use the fact that
the heterogeneity is induced by the variability of the interaction terms. For g1(x), x1 ≈ x3 so
1x1<0 − 21x3<0 = −1x1<0 and therefore g1 does not introduce variability. The variability of g3(x)
is also zero. The only term with variability is g2(x) = x1x2. Since x1, x2 are independent the effect
of this term varies according to the variation of x2 that has a standard deviation of σ2. Therefore,
independently of how each method computes the heterogeneity, the user should be able to understand
a variation of σ2 on the local effects.

RHALE. We compute in an analytic form the feature effect fRHALE(x1) and the heterogeneity σ(z)
for the RHALE method.
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fRHALE(x1) =

∫ x1

x1,min

Ex2,x3|z

[
∂f

∂x1
(z, x2, x3)

]
∂z (22)

=

∫ x1

x1,min

(Ex3|z[2πz cos(2πz)(1z<0 − 21x3<0)] + Ex2|z[x2]︸ ︷︷ ︸
0

)∂z (23)

=

∫ x1

x1,min

2πz cos(2πz)Ex3|z[(1z<0 − 21x3<0)]∂z (24)

≈
∫ x1

x1,min

2πz cos(2πz)(−1z<0)︸ ︷︷ ︸
µ(z)

∂z (25)

≈ − sin(2πx1)1x1<0 (26)

σ2(z) = Ex2,x3|z

[(
∂f

x1
(z, x2, x3)− µ(z)

)2
]

(27)

= Ex2,x3|z

[
(2πz cos(2πz)(1z<0 − 21x3<0) + x2 − 2πz cos(2πz)(−1z<0))

2
]

(28)

= Ex2,x3|z

[
(2πz cos(2πz)(21z<0 − 21x3<0) + x2)

2
]

(29)

= (4πz cos(2πz))2Ex3|z[(1z<0 − 1x3<0)
2] + Ex2|z[x

2
2] + Ex2,x3|z[4πz cos(2πz)(1z<0 − 1x3<0)x2]

(30)

= (4πz cos(2πz))2Ex3|z[(1z<0 − 1x3<0)
2] + σ2

2 + Ex2|z[x2]Ex3|z[4πz cos(2πz)(1z<0 − 1x3<0)]︸ ︷︷ ︸
0

(31)

= (4πz cos(2πz))2Ex3|z[(1z<0 + 1x3<0 − 21z<01x3<0] + σ2
2 (32)

= (4πx1 cos(2πx1))
2(21z<0 − 21z<0) + σ2

2 (33)

= σ2
2 (34)

PDP-ICE. We compute in an analytic form the feature effect fPDP(x1) and the heterogeneity
heterogeneity visualized by fICE(x1).

The PDP effect uses

6



0.4 0.2 0.0 0.2 0.4
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

ALE
ground truth
ALE estimation

(a) ALE plot (50 fixed-size bins) (b) PDP-ICE plot

2

1

0

1

2

y

RHALE
RHALE estimation
ground truth ALE
STD

0.4 0.2 0.0 0.2 0.4
x1

5

0

5

10

y/
x 1

bin std
bin effect

(c) RHALE plot

Figure 1: Feature effect of x1 on the example defined by Equation 20. ALE does not quantify the
heterogeneity and fixed-size splitting leads to a bad estimation. PDP-ICE plots fail in both main
effect and heterogeneity, failing to capture feature correlations. RHALE, on the other hand, provides
a robust estimation of the main effect and the heterogeneity.

fPDP(x1) = Ex2,x3
[f(x)] (35)

= sin(2πx1)Ex3
[1x1<0 − 21x3<0] + Ex2

[x1x2] + Ex2
[x2] (36)

= sin(2πx1)(1x1<0 − 2Ex3
[1x3<0]) + x1Ex2

[x2]︸ ︷︷ ︸
0

+Ex2
[x2]︸ ︷︷ ︸
0

(37)

= sin(2πx1)

(
1x1<0 − 2

∫ 0.5

−0.5

1x3<0p(x3)∂x3

)
(38)

= sin(2πx1)

(
1x1<0 − 2

∫ 0

−0.5

2
5

6
1x3<0∂x3 +

∫ 0.5

0

2
1

6
1x3<0∂x3

)
(39)

= sin(2πx1)

(
1x1<0 − 2

5

6

)
(40)

For the ICE plots:

fICE(xi
1) = sin(2πx1)(1x1<0 − 21xi

3<0) + x1x
i
2 + xi

2 (41)

= sin(2πx1)(1x1<0 − 21xi
3<0) + x1x

i
2 + c (42)

So if xi
3 < 0, which happens in almost 5

6 of the instances, then fICE(xi
1)(x1) = − sin(2πx1) +

x1x
i
2 + c, and in almost 1

6 of the instances, fICE(xi
1)(x1) = sin(2πx1) + x1x

i
2 + c.

Discussion. The derivations above are reflected in Figure 1. We observe that PDP and ICE
provide misleading explanations which are not due to some approximation error, e.g., due to limited
samples. As shown by Equation 35 and Equation 41 PDP and ICE systematically produce misleading
explanations [Apley and Zhu, 2020] for the feature effect and the heterogeneity in cases of correlated
features. In contrast, we confirm our previous knowledge that ALE handles well these cases and we
observe that the deviation from the ground is only due to approximation issues, which are addressed
by RHALE.
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B.2 Simulation Study

The data generating distribution is p(x) = p(x3)p(x2|x1)p(x1), where x1 ∼ U(0, 1), x2 = x1 + ϵ,
where ϵ ∼ N (0, 0.01) is a small additive, noise and x3 ∼ N (0, σ2

3 = 1
4 ). The predictive function is:

f(x) = αf2(x)︸ ︷︷ ︸
g3(x)

+ f1(x)1f1(x)≤ 1
2︸ ︷︷ ︸

g1(x)

+(1− f1(x))1 1
2<f1(x)<1︸ ︷︷ ︸

g2(x)

(43)

where f1(x) = a1x1 + a2x2 is a linear combination of x1, x2, and f2(x) = x1x3 interacts the non-
correlated features x1, x3. We evaluate the effect computed by RHALE and PDP-ICE in three cases;
(a) without interaction (α = 0) and equal weights (a1 = a2), (b) without interaction (α = 0) and
different weights (a1 ̸= a2) and (c) with interaction (α > 0) and equal weights (a1 = a2).

Ground truth for case (a) In this case, the weights are a1 = a2 = 1 and there is no interaction
term α = 0). Therefore:

f(x) = f1(x)1f1(x)≤ 1
2
+ (1− f1(x))1 1

2<f1(x)<1 (44)

where f1(x) = x1 + x2. For the ground truth feature effect, we use the fact that x1 ≈ x2, therefore
knowing only the value of x1 we can automatically infer the value of x2 and therefore the value of
f1(x). For example, when 0 ≤ x1 ≤ 1

4 then 0 ≤ f1(x) ≤ 1
2 and, therefore, f1(x1) = a1x1. In a

similar way, we compute the effect of x2. The effect of x3 is zero.

fGT(x1) = x110≤x1≤ 1
4
+

(
1

4
− x1

)
1 1

4<x1<
1
2

(45)

fGT(x2) = x210≤x2≤ 1
4
+

(
1

4
− x2

)
1 1

4<x2<
1
2

(46)

fGT(x3) = 0 (47)

The heterogeneity is zero for all features because the heterogeneity is induced by the variability of
the interaction terms and, since, x1 ≈ x2, the terms 1f1(x)≤ 1

2
and 1 1

2<f1(x)≤1, do not vary.

Ground truth for case (b) In this case, the weights are a1 = 2 and a2 = 1
2 and there is no

interaction term α = 0. Therefore:

f(x) = f1(x)1f1(x)≤ 1
2
+ (1− f1(x))1 1

2<f1(x)<1 (48)

where f1(x) = 2x1+
1
2x2. As in case (a), we use again the fact that x1 ≈ x2, to compute the ground

truth feature effect:

fGT(x1) = 2x110≤x1≤ 1
5
+ (

2

5
− 2x1)1 1

4<x1<
2
5

(49)

fGT(x2) = 2x210≤x2≤ 1
5
+ (

2

5
− 2x2)1 1

4<x2<
2
5

(50)

fGT(x3) = 0 (51)

The heterogeneity is zero for all features because the heterogeneity is induced by the variability of
the interaction terms and, since, x1 ≈ x2, the terms 1f1(x)≤ 1

2
and 1 1

2<f1(x)≤1, do not vary.
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Figure 4: Case (b)

Ground truth for case (c) In this case, the weights are equal a1 = a2 = 1 and the is interaction
term is enabled (α = 1). Therefore:

f(x) = f2(x) + f1(x)1f1(x)≤ 1
2
+ (1− f1(x))1 1

2<f1(x)<1 (52)

where f2(x) = x1x3 and f1(x) = x1 + x2. The feature effect of terms f1(x)1f1(x)≤ 1
2
+ (1 −

f1(x))1 1
2<f1(x)<1 are exactly the same with case (a). The term f2(x) = x1x2. For feature x1 the ef-

fect is Ex3|x1
[x1x3] = x1Ex3

[x3] = 0 and for feature x2 the effect is Ex1|x3
[x1x3] = x3Ex1

[x1] = 0.5x3.
Therefore, the ground truth feature effect is:

fGT(x1) = x110≤x1≤ 1
4
+

(
1

4
− x1

)
1 1

4<x1<
1
2

(53)

fGT(x2) = x210≤x2≤ 1
4
+

(
1

4
− x2

)
1 1

4<x2<
1
2

(54)

fGT(x3) =
1

2
x3 (55)

For the same reason with cases (a) and (b), the terms 1f1(x)≤ 1
2
and 1 1

2<f1(x)≤1, do not introduce
heterogeneity. Since x1, x2 are independent the effect of x1x3 varies. For feature x1, it varies following
the standard deviation of x3, i.e. σ3 = 1

2 and for feature x3, it varies following the standard deviation
of x1, i.e. σ1 = 1

4 .

Conclusion. The example confirms our previous knowledge that PDP-ICE provide erroneous ef-
fects in cases with correlated features. The feature effect computed by PDP and the heterogeneity
illustrated by ICE are correct only for feature x3, because it is independent from the other features.
For features the correlated features x1, x2, both PDP and ICE provide misleading explanations. In
contrast, RHALE handles well all cases, providing accurate estimations for the feature effects and
the heterogeneity.
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Table 1: Description of the features apparent in the California-Housing Dataset

Description min max µ σ
x1 longitude −124.35 −114.31 −119.58 2
x2 latitude 32.54 41.95 35.65 2.14
x3 median age of houses 1 52 29.01 12.42
x4 total number of rooms 2 9179 2390.79 1433.83
x5 total number of bedrooms 2 1797 493.86 291
x6 total number of people 3 4818 1310.91 771.78
x7 total number of households 2 1644 460.3 267.34
x8 median income of households 0.5 9.56 3.72 1.60
y median house value 14.999 500000 206864.41 115435.67

B.3 Real World Experiment

In this section, we provide further details on the real-world example. The real-world example uses the
California Housing Dataset, which contains 8 numerical features. We exclude instances with missing
or outlier values. If we denote as µs (σs) the average value (standard deviation) of the s-th feature,
we consider outliers the instances of the training set with any feature value over three standard
deviations from the mean, i.e. |xi

s − µs| > σs. This preprocessing step discards 884 instances, and
N = 19549 remain. We provide their description with some basic descriptive statistics in Table 1
and their histogram in Figure 5.

In Figure 7 of the main paper, we provided the RHALE vs PDP-ICE plots for features x2

(latitude), x6 (total number of people) and x8 (median house value). In figure 8, we compared
RHALE with fixed-size approximation, for the same features. In Figure 6, we provide the same
information for the rest of the features; x1 (longitude), x3 (median age of houses), x4 (total number
of rooms), x5 (total number of bedrooms) and x7 (total number of households). The observation
of these features leads us to similar conclusion. First, RHALE and PDP-ICE plots compute similar
effects and level of heterogeneity and RHALE’s approximation is (almost) as good as the best fixed-
size approximation. More specifically, we observe that RHALE’s variable size bin splitting correctly
creates wide bins for features x3, x4, x5, x7, where the feature effect plot is (piecewise) linear, while
using narrow bins for feature x2 where the feature effect is not linear.

References

Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised
learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82
(4):1059–1086, 2020.

11



124 122 120 118 116 114
x1

0

500

1000

1500

2000

2500
Feature x1 histogram (after preprocessing)

34 36 38 40 42
x2

0

500

1000

1500

2000

2500

3000
Feature x2 histogram (after preprocessing)

0 10 20 30 40 50
x3

0

200

400

600

800

1000

1200

Feature x3 histogram (after preprocessing)

0 2000 4000 6000 8000
x4

0

200

400

600

800

1000

1200

1400

Feature x4 histogram (after preprocessing)

0 250 500 750 1000 1250 1500 1750
x5

0

200

400

600

800

1000

1200

1400
Feature x5 histogram (after preprocessing)

0 1000 2000 3000 4000 5000
x6

0

200

400

600

800

1000

1200

Feature x6 histogram (after preprocessing)

0 250 500 750 1000 1250 1500
x7

0

200

400

600

800

1000

1200

1400
Feature x7 histogram (after preprocessing)

2 4 6 8 10
x8

0

200

400

600

800

1000

Feature x8 histogram (after preprocessing)

Figure 5: The Histogram of each feature in the California Housing Dataset.
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Figure 6: From left to right: (a) RHALE plot, (b) PDP-ICE plot, (c) RHALE vs fixed-size Lµ and
(d) RHALE vs fixed-size Lσ. From top to bottom, features x1, x3, x4, x5, x7, x8.
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