Paper presentation at ACML 2022 DALE: Differential Accumulated Local Effects for efficient and accurate global explanations

Vasilis Gkolemis^{1,2} Theodore Dalamagas¹ Christos Diou²

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

December 2022

ACML 2022

eXplainable AI (XAI)

- Black-box model $f(\cdot): \mathcal{X} \to \mathcal{Y}$, trained on \mathcal{D}
- XAI extracts interpretable properties:
 - \rightarrow Tabular data Which features favor a prediction?
 - $\rightarrow\,$ Computer Vision Which image areas confuse the model?
 - $\rightarrow\,$ NLP Which words classified the comment as offensive?
- Categories:
 - ightarrow Global vs local
 - \rightarrow Model-agnostic vs Model-specific
 - \rightarrow Output? number, plot, instance etc.

Feature Effect: global, model-agnostic, outputs plot

Feature Effect

 $y = f(x_s) \rightarrow \text{plot showing the effect of } x_s \text{ on the output } y$

Figure: Image taken from Interpretable ML book (Molnar, 2022)

Feature Effect is simple	and intuitive.	ㅁ › 《圊 › 《볼 › 《볼 ›	æ	৩৫৫
Gkolemis, Vasilis (ATH-HUA)	ACML 2022	December 2022		3 / 22

- $x_s \rightarrow$ feature of interest, $x_c \rightarrow$ other features
- How to isolate x_s??
- Difficult task:
 - features are correlated
 - f has learned complex interactions

Feature Effect Methods

- PDP (Friedman, 2001)
 - $f(x_s) = \mathbb{E}_{\boldsymbol{x}_c}[f(x_s, \boldsymbol{x}_c)]$
 - Unrealistic instances

• e.g.
$$f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$$

PDP vs MPlot vs ALE

Gkolemis, Vasilis (ATH-HUA)
---------------------	----------

→ ∃ →

- N

Feature Effect Methods

- PDP (Friedman, 2001)
 - $f(x_s) = \mathbb{E}_{\mathbf{x}_c}[f(x_s, \mathbf{x}_c)]$
 - Unrealistic instances
 - e.g. $f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$
- MPlot (Apley and Zhu, 2020)
 - $\mathbf{x}_{c}|x_{s}: f(x_{s}) = \mathbb{E}_{\mathbf{x}_{c}|x_{s}}[f(x_{s}, \mathbf{x}_{c})]$
 - Aggregated effects
 - ▶ Real effect: $x_{age} = 20 \rightarrow 10$, $x_{years_contraceptives} = 20 \rightarrow 10$
 - MPlot may assing 17 to both

PDP vs MPlot vs ALE

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Feature Effect Methods

- PDP (Friedman, 2001)
 - $f(x_s) = \mathbb{E}_{\mathbf{x}_c}[f(x_s, \mathbf{x}_c)]$
 - Unrealistic instances
 - e.g. $f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$
- MPlot (Apley and Zhu, 2020)
 - $\mathbf{x}_{c}|x_{s}: f(x_{s}) = \mathbb{E}_{\mathbf{x}_{c}|x_{s}}[f(x_{s}, \mathbf{x}_{c})]$
 - Aggregated effects
 - ▶ Real effect: $x_{age} = 20 \rightarrow 10$, $x_{years_contraceptives} = 20 \rightarrow 10$
 - MPlot may assing 17 to both
- ALE(Apley and Zhu, 2020)

•
$$f(x_s) = \int_{x_{min}}^{x_s} \mathbb{E}_{\mathbf{x}_c|z} [\frac{\partial f}{\partial x_s}(z, \mathbf{x}_c)] \partial z$$

Resolves both failure modes

PDP vs MPlot vs ALE

- ロ ト - (周 ト - (日 ト - (日 ト -)日

ALE approximation

ALE definition: $f(x_s) = \int_{x_{s,min}}^{x_s} \mathbb{E}_{\mathbf{x_c}|z}[\frac{\partial f}{\partial x_s}(z, \mathbf{x_c})]\partial z$ ALE approximation: $f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{[f(z_k, \mathbf{x}_c^i) - f(z_{k-1}, \mathbf{x}_c^i)]}_{\text{point effect}}$ bin effect 1.00 N1(5) N1(1) N1(2) N1(3) N1(4) 0.75 N 0.25 0.00 -Z2.1 Z6.1 x1

Figure: Image taken from Interpretable ML book (Molnar, 2022)

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

ALE approximation - weaknesses

$$f(x_s) = \sum_{k}^{k_x} \underbrace{\frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{[f(z_k, \mathbf{x}_c^i) - f(z_{k-1}, \mathbf{x}_c^i)]}_{\text{point effect}}}_{\text{bin effect}}$$

Point Effect ⇒ evaluation at bin limits

- 2 evaluations of f per point \rightarrow slow
- change bin limits, pay again 2 * N evaluations of $f \rightarrow$ restrictive
- ▶ broad bins may create out of distribution (OOD) samples → not-robust in wide bins

ALE approximation has some weaknesses

Our proposal: Differential ALE

Point Effect ⇒ evaluation on instances

- Fast \rightarrow use of auto-differentiation, all derivatives in a single pass
- \blacktriangleright Versatile \rightarrow point effects computed once, change bins without cost
- Secure \rightarrow does not create artificial instances

For differentiable models, DALE resolves ALE weaknesses

Gkolemis,	Vasilis ((ATH-HUA)	ł
-----------	-----------	-----------	---

DALE is faster and versatile - theory

- Faster
 - gradients wrt all features $\nabla_{\mathbf{x}} f(\mathbf{x}^{i})$ in a single pass
 - auto-differentiation must be available (deep learning)
- Versatile
 - Change bin limits, with near zero computational cost

DALE is faster and allows redefining bin-limits

DALE is faster and versatile - Experiments

Figure: Light setup; small dataset ($N = 10^2$ instances), light f. Heavy setup; big dataset ($N = 10^5$ instances), heavy f

DALE considerably accelerates the estimation

Gkolemis, Va	silis (ATH	H-HUA)
--------------	------------	--------

ACML 2022

December 2022 10 / 22

DALE uses on-distribution samples - Theory

- point effect independent of bin limits
 - $\frac{\partial f}{\partial x_s}(x_s^i, x_c^i)$ computed on real instances $x^i = (x_s^i, x_c^i)$
- bin limits affect only the resolution of the plot
 - \blacktriangleright wide bins \rightarrow low resolution plot, bin estimation from more points
 - \blacktriangleright narrow bins \rightarrow high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances

DALE uses on-distribution samples - Experiments

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 \pm g(x)$$
$$x_1 \in [0, 10], x_2 \sim x_1 + \epsilon, x_3 \sim \mathcal{N}(0, \sigma^2)$$
$$f_{ALE}(x_1) = \frac{x_1^2}{2}$$

- point effects affected by (x₁x₃) (σ is large)
- bin estimation is noisy (samples are few)

Intuition: we need wider bins (more samples per bin)

ACML 2022

DALE vs ALE - 40 Bins

- \bullet DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

DALE vs ALE - 40 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

H December 2022 13/22

- N

< 行

DALE vs ALE - 20 Bins

- \bullet DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

DALE vs ALE - 20 Bins

- \bullet DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022 14 / 22

< A

DALE vs ALE - 10 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: starts being OOD, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

DALE vs ALE - 10 Bins

- \bullet DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: starts being OOD, noisy bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022 15 / 22

< □ > < 凸

DALE vs ALE - 5 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

DALE vs ALE - 5 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022 16 / 22

ヨト イヨト

< □ > < @ >

DALE vs ALE - 3 Bins

- \bullet DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022

DALE vs ALE - 3 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

Gkolemis, Vasilis (ATH-HUA)

ACML 2022

December 2022 17 / 22

A B A A B A

< □ > < @ >

- Bike-sharing dataset(Fanaee-T and Gama, 2013)
- $y \rightarrow$ daily bike rentals
- x : 10 features, most of them characteristics of the weather

	Number of Features										
	1	2	3	4	5	6	7	8	9	10	11
DALE	1.17	1.19	1.22	1.24	1.27	1.30	1.36	1.32	1.33	1.37	1.39
ALE	0.85	1.78	2.69	3.66	4.64	5.64	6.85	7.73	8.86	9.9	10.9

Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

DALE requires almost same time for all features

Real Dataset Experiments - Accuracy

- Difficult to compare in real world datasets
- We do not know the ground-truth effect
- In most features, DALE and ALE agree.
- Only X_{hour} is an interesting feature

Figure: (Left) DALE (Left) and ALE (Right) plots for $K = \{25, 50, 100\}$

- Could we automatically decide the optimal bin sizes?
 - Sometimes narrow bins are ok
 - Sometimes wide bins are needed
- What about variable size bins?
- Model the uncertainty of the estimation?

DALE can be a driver for future work

Thank you

• Questions?

3

References I

Apley, Daniel W. and Jingyu Zhu (2020). "Visualizing the effects of predictor variables in black box supervised learning models". In: Journal of the Royal Statistical Society. Series B: Statistical *Methodology* 82.4, pp. 1059–1086. ISSN: 14679868. DOI: 10.1111/rssb.12377. arXiv: 1612.08468. Fanaee-T, Hadi and Joao Gama (2013). "Event labeling combining ensemble detectors and background knowledge". In: Progress in Artificial Intelligence, pp. 1–15. ISSN: 2192-6352. DOI: 10.1007/s13748-013-0040-3. URL: [WebLink]. Friedman, Jerome H. (2001). "Greedy function approximation: A gradient boosting machine". In: Annals of Statistics 29.5, pp. 1189–1232. ISSN: 00905364. DOI: 10.1214/aos/1013203451. Molnar, Christoph (2022). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. 2nd ed. URL: https://christophm.github.io/interpretable-ml-book.

Image: A math a math