DALE: Differential Accumulated Local
Effects for efficient and accurate global —
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TL;DR

DALE is a better approximation to ALE, the SotA
feature effect method. By better, we mean faster and

more accurate.
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Motivation

Feature effect (FE) plots are simple and intuitive; they isolate the impact of a
single feature x5 on the output y. By inspecting a FE plot, a non-expert can
quickly understand whether a feature has positive /negative impact (and to what
extent) on the target variable.

This simplicity comes at a cost; isolating the effect of a single variable on the
output is tricky because normally, features are correlated and the black-box
function learns complex input-output mappings. ALE (Apley and Zhu ) is the
SotA feature effect method because it handles well correlated features. However,
ALE estimation, i.e., the approximation of ALE from the instances of the training
set, has some drawbacks; it becomes inefficient in high-dimensional datasets and it
is vulnerable to creating synthetic out-of-distribution instances.

In this work, we analyze these drawbacks and propose Differential ALE (DALE), a
novel approximation, that we addresses them.
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Conclusion

In case you work with a differentiable model, as in Deep Learning, use DALE to:

m compute the effect of all features efficiently
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DALE is accurate

Consider the following case; (a) we have
limited samples (b) high variance in some

A features and (c) the black-box function
- changes abruptply outside of the data
400 manifold. For example, f(xz1, 2o, 23) =
N T1To + 1123 + g(x), with 21 € |0, 10],
~200 To = T1 + € and x3 ~ N(O,UQ). The

—-400

term x;x3 makes estimations from limited

—-600

~800 samples (narrow bins) noisy, see Figure 1.
o f we use larger bins (more B2=) DALE

eads to a good estimation whereas ALE
fails due to OOD samples.
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Figure 1. Narrow bins (K = 40) = limited Sag‘i‘;'es = both plots are noisy
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Figure 2. Wide bins (K = 5) = many Sargi‘:lles — DALE is accurate, ALE is affected by OOD

DALE is fast

In a large and high dimensional dataset, ALE needs 10 mins, DALE some seconds!
We test DALE vs ALE in two setups (Figure 3). The light and heavy setup differ in
the size of the dataset (/N = 10* vs N = 10° instances) and the cost of evaluating
f (light vs heavy). In both cases, DALE scales much better wrt dimensionality D.
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Figure 3. Light setup; small dataset (N = 10° instances), light f. Heavy setup; big dataset (N = 10°
instances), heavy f
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