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Abstract
Accumulated Local Effect (ALE) is a method for accurately estimating feature effects,
overcoming fundamental failure modes of previously-existed methods, such as Partial
Dependence Plots. However, ALE’s approximation, i.e. the method for estimating ALE
from the limited samples of the training set, faces two weaknesses. First, it does not scale
well in cases where the input has high dimensionality, and, second, it is vulnerable to out-
of-distribution (OOD) sampling when the training set is relatively small. In this paper, we
propose a novel ALE approximation, called Differential Accumulated Local Effects (DALE),
which can be used in cases where the ML model is differentiable and an auto-differentiable
framework is accessible. Our proposal has significant computational advantages, making
feature effect estimation applicable to high-dimensional Machine Learning scenarios with
near-zero computational overhead. Furthermore, DALE does not create artificial points
for calculating the feature effect, resolving misleading estimations due to OOD sampling.
Finally, we formally prove that, under some hypotheses, DALE is an unbiased estimator
of ALE and we present a method for quantifying the standard error of the explanation.
Experiments using both synthetic and real datasets demonstrate the value of the proposed
approach.
Keywords: Feature Effect; Explainable AI; Interpretability; Global Methods; Neural
Networks

1. Introduction

Machine Learning (ML) models have been adopted to high-stakes application domains,
such as healthcare and finance. These fields require methods with the ability to explain
their predictions, i.e., justify why a specific outcome has emerged. However, several types
of accurate and highly non-linear models like Deep Neural Networks do not meet this
requirement. Therefore, there is a growing need for explainability methods for interpreting
such “black-box” models. Feature effect forms a fundamental category of global explainability
methods (i.e. characterizing the model as a whole, not a particular input). The goal of the
feature effect is to isolate the average impact of a single feature on the output. This class of
methods is attractive due to the simplicity of the explanation that is easily understandable
by a non-expert.
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There are three popular feature effect methods: (i) Partial Dependence Plots (PDPlots)
(Friedman, 2001), (ii) Marginal Plots (MPlots) (Apley and Zhu, 2020) and (iii) Accumulated
Local Effects (ALE) (Apley and Zhu, 2020). PDPlots and MPlots assume that input features
are not correlated. When this does not hold, both methods lead to misestimation; PDPlots
quantify the effect by marginalizing over out-of-distribution (OOD) synthetic instances,
and MPlots yield aggregated effects on single features. Therefore, both methods perform
well only in independent or low-correlated features. ALE is the only feature effect method
that succeeds in staying on distribution and isolating feature effects in situations where
input features are highly correlated.1 However, in most cases, it is impossible to compute
ALE through its definition since this would require (a) solving a high-dimensional integral,
which is infeasible, and (b) evaluating the data generating distribution, which is usually
unknown. Therefore, Apley and Zhu (2020) proposed an estimating ALE with a Monte-Carlo
approximation. This approximation faces two weaknesses. First, it becomes computationally
inefficient in cases of datasets with numerous high-dimensional instances. Second, it is still
vulnerable to OOD sampling in cases of wide bin sizes.

This paper proposes Differential Accumulated Local Effects (DALE), a novel approx-
imation for ALE that resolves both weaknesses. DALE leverages auto-differentiation for
computing the derivatives wrt each instance in a single pass. Therefore, it scales well in
the case of high-dimensional inputs, large training sets and expensive black-box models.
Furthermore, DALE estimates the feature effect using only the examples from the training
set, securing that the estimation is not affected by OOD samples. The contributions of this
work are:

• We introduce DALE, a novel approximation to efficiently create ALE plots on differen-
tiable black-box models. DALE is more efficient than the traditional ALE approxima-
tion, scales much better to high-dimensional datasets, and avoids OOD sampling.

• We formally prove that DALE is an unbiased estimator of ALE and quantify the
standard error of the approximation.

• We show with synthetic and real datasets that DALE: (a) scales better than ALE, (b)
provides a better approximation than ALE, especially in cases of wide bins. Code for
reproducing all experiments is provided at https://github.com/givasile/DALE.

2. Related Work

Explainable AI (XAI) is a fast-evolving field with a growing interest. In recent years,
the domain has matured by establishing its terminology and objectives (Hoffman et al.,
2018). Several surveys have been published (Arrieta et al., 2020), (Adadi and Berrada, 2018)
classifying the different approaches and detecting future challenges on the field (Molnar et al.,
2020). There are several criteria for grouping XAI methods. A very popular distinction is
between local and global ones. Local interpretability methods explain why a model made a
specific prediction given a specific input. For example, local surrogates such as LIME (Ribeiro
et al., 2016) train an explainable-by-design model in data points generated from a local area
around the input under examination. SHAP values (Lundberg and Lee, 2017) measures

1. In Section 3, we provide a thorough analysis for clarifying the differences between these three approaches.
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the contribution of each attribute in a specific prediction, formulating a game-theoretical
framework based on Shapley Values. Counterfactuals (Wachter et al., 2017) search for a data
point as close as possible to the examined input that flips the prediction. Anchors (Ribeiro
et al., 2018) provide a rule, i.e., a set of attribute values, that is enough to freeze the
prediction, independently of the value of the rest of the attributes.

Global methods, which is the focus of this paper, explain the average model behavior.
Global surrogates approximate the black-box model with a simple one, for example, decision
trees (Nanfack et al., 2021). Prototypes (Gurumoorthy et al., 2019) search for data points
that are representative for each class and criticisms (Kim et al., 2016) for ambiguous data
points that representative of the boarder between classes. Global feature importance methods
characterize each input feature by assigning to it an importance score. Permutation feature
importance (Fisher et al., 2019) measures the change in the prediction score of a model, after
permuting the value of each feature. Often, apart from knowing that a feature is important,
it also valuable to know the type of the effect on the output (positive/negative). Feature
effect methods take a step further and quantify the type of a each feature attribute influences
the output on average. There are three popular feature effect techniques Partial Dependence
Plots (Friedman, 2001), Marginal Plots and ALE (Apley and Zhu, 2020). Another class
of global explanation techniques measures the interaction (Friedman and Popescu, 2008)
between features. Feature interaction quantifies to what extent the effect of two variables on
the outcome is because of their combination. Friedman and Popescu (2008) proposed a set
of appropriate visualizations for such interactions. The generalization of feature effect and
variable interactions is functional decomposition (Molnar et al., 2019), that decomposes the
black-box function into a set of simpler ones that may include more than two features.

3. Background

This section introduces the reader to three popular feature effect methods; PDPlots, MPlots
and ALE.

Notation. We use uppercase and calligraphic font X for random variables (rv), plain
lowercase x for scalar variables and bold x for vectors. Often, we partition the input vector
x ∈ RD to the feature of interest xs ∈ R and the rest of the features xc ∈ RD−1, and for
convenience we notate it x = (xs,xc). We clarify that (xs,xc) corresponds to the vector
(x1, · · · , xs, · · ·xD). Equivalently, we notate the corresponding rv to X = (Xs,Xc). The
black-box function is f : RD → R and the feature effect of the s-th feature is f<method>(xs),
where < method > is the name of the feature effect method.

Feature Effect Methods. PDPlots formulate the feature effect of the s-th attribute as
an expectation over the marginal distribution Xc, i.e., fPDP(xs) = EXc [f(xs,Xc)]. MPlots
formulate it as an expectation over the conditional Xc|Xs, i.e., fMP(xs) = EXc|Xs=xs

[f(xs,Xc)].
ALE computes the global effect at xs as an accumulation of the local effects. The local effect
at point z is the expected change on the output over the conditional distribution Xc|Xs = z,
i.e. EXc|Xs=z

[
∂f(xs,Xc)

∂xs

]
. The formula that defines ALE is presented below:

fALE(xs) = c+

∫ xs

−∞
EXc|Xs=z

[
∂f(z,Xc)

∂z

]
∂z (1)
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The constant c is used for centering the ALE plot. For illustrating the differences between the
methods and the superiority of ALE, we provide a toy example. We select a bivariate black-
box function f with correlated features; the first feature x1 follows a uniform distribution
x1 ∼ U(0, 1) and the second feature gets the value of x1 in a deterministic way, i.e., x2 = x1.
The black-box function is the following piece-wise linear mapping:

f(x1, x2) =

{
1− x1 − x2 x1 + x2 ≤ 1

0 otherwise
(2)

Due to the piece-wise linear form, it is easy to isolate the effect of x1; Insider the region
0 ≤ x1 ≤ 0.5, the effect is linear, i.e., −x1, and outside it is constant, i.e., the effect does not
depend on x1. The closed-form solution for each method is presented below: 2 3

fPDP(x1) = EX2 [f(x1,X2)] =
(1− x1)2

2
, ∀x1 ∈ [0, 1] (3)

fMP(x1) = EX2|X1=x1
[f(x1,X2)] =

{
1− 2x1 x1 ≤ 0.5

0 otherwise
(4)

fALE(x1) = c+

∫ x1

z0

EX2|X1=z

[
∂f(z,X2)

∂z

]
∂z =

{
c− x1 0 ≤ x1 ≤ 0.5

c− 0.5 0.5 ≤ x1 ≤ 1
(5)

The effect computed in Eqs. (3), (4) helps us understand that PDPlots and MPlots provide
misleading results in cases of correlated features. PDPlots integrate over unrealistic instances
due to the use of the marginal distribution p(X1). Therefore, they incorrectly result in a
quadratic effect in the region x1 ∈ [0, 1]. MPlots resolve this issue using the conditional
distribution X2|X1 but suffer from computing combined effects. In the linear subregion, the
effect is overestimated as −2x1 which is the combined effect of both x1 and x2. As Eq. (5)
shows, ALE resolves both issues and provides the correct effect.

In real scenarios, we cannot obtain a solution directly from Eq. (1). Therefore, Apley
and Zhu (2020) proposed a solution by splitting the xs axis into bins, computing the local
effects inside each bin with a Monte Carlo approximation, and, finally, averaging the bin
effects. As we discuss extensively in Sections 4.2 and 4.3, this approximation does not scale
well to high-dimensional datasets and is vulnerable to OOD sampling.

4. Differential Accumulated Local Effects (DALE)

In this section, we present DALE. First, we formulate the expression for the first and second-
order DALE and, then, we explain its computational benefits and its robustness to OOD
sampling. Finally, we quantify the standard error of the DALE estimation.

2. Detailed derivations can be found in the helping material.
3. Due to symmetry, for each method, the effect for x2 is the same with the effect of x1
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4.1. Definition of DALE

As briefly discussed in Section 3, in most cases it is infeasible to compute ALE in an analytical
form. Therefore, Apley and Zhu (2020) proposed the following approximation that is based
on the instances of the training set:

f̂ALE(xs) =

kx∑
k=1

1

|Sk|
∑

i:xi∈Sk

[f(zk,x
i
c)− f(zk−1,x

i
c)] (6)

We denote as xi the i-th example of the training set and as xis its s-th feature. kx is the
index of the bin xs belongs to, i.e., kx : zkx−1 ≤ xs < zkx and Sk is the set of points that
lie in the k-th bin, i.e. Sk = {xi : zk−1 ≤ xis < zk}. For understanding Eq. (6) better,
we split it in three levels: Instance effect is the effect computed on the i-th example, i.e.,
∆fi = f(zk,x

i
c)− f(zk−1,x

i
c), bin effect is the effect computed by the samples that are in

the k-th bin, i.e. 1
|Sk|

∑
i:xi∈Sk ∆fi, and global effect is ALE approximation f̂ALE(xs). The

approximation splits the axis into K equally-sized bins and computes each bin effect by
averaging the instance effects of the samples that lie in each bin. The global effect is the
accumulation of the bin effects. To make a connection with ALE definition (Eq. 1), the bin
effect is an estimation of the accumulated local effects of the interval covered by the bin,
i.e.

∫ zk
zk−1

EXc|Xs=z

[
∂f(z,Xc)

∂xs

]
∂z. The approach of Eq. (6) has some weaknesses. Firstly, it is

computationally demanding since it evaluates f for 2 ·N ·D artificial samples, where N is the
number of samples in the dataset and D is the number of features. Secondly, it is vulnerable
to OOD sampling when the bins length becomes large. This happens because the instance
effects are estimated by generating artificial samples at the bin limits. Finally, the whole
computation usable only for a predefined bin length; altering the bin size for assessing the
feature effect at a different resolution, requires all computations to be repeated from scratch.

4.1.1. First-order DALE.

To address these drawbacks, we propose Differential Accumulated Feature Effect (DALE)
that exploits the partial derivatives without altering the data points. The following formula
describes the first-order DALE approximation:

f̂DALE(xs) = ∆x

kx∑
k=1

1

|Sk|
∑

i:xi∈Sk

[fs(x
i)] = ∆x

kx∑
k=1

µ̂k (7)

where ∆x is the bin length and fs the partial derivative wrt xs, i.e. fs = ∂f
∂xs

. We use
µ̂sk = 1

|Sk|
∑

i:xi∈Sk [fs(x
i)] to indicate the estimated k-th bin effect. DALE uses only the

dataset samples and doesn’t perturb any feature, securing that we estimate the bin effect
from on-distribution (observed) data points. In Eq. (7), the estimation of the instance effect
at each training sample is independent from the bin size. Unlike ALE approximation, the
number of the bins (hyperparameter K) affects only the resolution of the plot and not the
instance effects. Finally, DALE enables computing the local effects fs(xi) for s = {1, . . . , D},
i = {1, . . . , N} once, and reusing them to create ALE plots of different resolutions. Therefore,
the user may experiment with feature effect plots at many different resolutions, with near-zero
computational cost.
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4.1.2. Second-order DALE.

Apley and Zhu (2020) also provide a formula for approximating the combined effect of a
pair of attributes xl, xm:4

f̂ALE(xl, xm) =

px∑
p=1

qx∑
q=1

1

|Sp,q|
∑

i:xi∈Sp,q

∆2fi (8)

where ∆2fi = [f(zp, zq,xc)− f(zp−1, zq,xc)]− [f(zp, zq−1,xc)− f(zp−1, zq−1,xc)]. As before,
instead of evaluating the second-order derivative at the limits of the grid, we propose
accessing the second-order derivatives on the data points. The following formula describes
the second-order DALE approximation:

f̂DALE(xl, xm) = ∆xl∆xm

px∑
p=1

qx∑
q=1

1

|Sp,q|
∑

i:xi∈Sp,q

fl,m(xi) = ∆xl∆xm

px∑
p=1

qx∑
q=1

µ̂sp,q (9)

where fl,m(x) is the second-order derivative evaluated at xi, i.e. fl,m(x) =
∂2f(x)

∂xl∂xm
, and ∆xl,

∆xm correspond to the bin step for features xl and xm, respectively. As in the first-order
description, we use µ̂sp,q = 1

|Sp,q |
∑

i:xi∈Sp,q fl,m(xi) to express the local effect at the bin (p, q).
DALE second-order approximation has the same advantages over ALE as in the first-order
case; it is faster, protects from OOD sampling and permits multi-resolution plots, with
near-zero additional cost.

4.2. Computational Benefit

DALE approximation has significant computational advantages. For estimating the feature
effect of all features, our approach processes the N data points of the training set. In
contrast, ALE approximation generates and processes 2 · N · D, weighting by a factor of
D the computational complexity and the memory requirements. Therefore, DALE scales
nicely in problems with high dimensionality as is the case in most Deep Learning setups.
Our approach is built on the computation of the Jacobian matrix,

J =

∇xf(x1)
...

∇xf(xN )

 =

 f1(x
1) . . . fD(x1)

...
. . .

...
f1(x

N ) . . . fD(xN )

 (10)

where, as before, fs(xi) is the partial derivative of the s-th feature evaluated at the i-th
training point. Automatic differentiation enables the computation of the gradients wrt
all features in a single pass. Computing the gradient vector for a training example xi

wrt all features ∇xf(xi) = [f1(x), · · · , fD(x)] is computationally equivalent to evaluating
f(xi). Based on this observation, computing the whole Jacobian matrix costs O(N). In
contrast, in ALE, the evaluation of f for 2 ·N ·D times costs O(N ·D). Our method, also,
takes advantage of all existing automatic differentiation frameworks which are optimized for

4. For completeness, we provide the second-order ALE definition in the helping material.
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computing the gradients efficiently.5 In Algorithm 1, we present DALE in an algorithmic
form. The algorithm needs as input: (a) the black-box function f , (b) the derivative of ∇xf
and (c) the dataset X.6 The parameter K defines the resolution of the DALE plot. The
algorithm returns a matrix A, where the cell As,j contains the effect of the j-th bin of the
s-th feature, i.e., f̂sDALE(x) = As,kx . Steps 3-5 iterate over each attribute, therefore these
steps have complexity O(N ·D). However these steps involve relatively cheap operations
(allocation, averaging and aggregation) in comparison with the computation of the Jacobian
matrix. Finally, with matrix A computed, evaluating f̂DALE(x) requires only locating the bin
kx that x belongs to. The same computational advantage also hold for the second-order
DALE. In the second-order we need to compute the Hessian Matrix instead of the Jacobian
(Step 1) and to allocate the points in a 2D grid instead of the sequence of intervals (Step 3).

Algorithm 1 DALE approximation
Input: f,∇xf,X
Parameter: K
Output: A
1: Compute the Jacobian J of Eq. (10)
2: for s = 1, . . . , D do
3: Allocate points ⇒ Sk∀k
4: Estimate local effect ⇒ µ̂sk∀k of Eq. (7)
5: Aggregate ⇒ As,j = ∆x

∑j
k=1 µ̂

s
k, j = 1, . . . ,K

6: end for
7: return A || Note that f̂DALE(x) = As,kx

4.3. Robustness to out-of-distribution sampling

OOD sampling is the source of failure in many explainability methods that perturb fea-
tures( Baniecki et al. (2021), Hooker et al. (2021)). ALE is vulnerable to OOD sampling
when the bin length is relatively big, or, equivalently, when the number of bins (hyperpa-
rameter K) is relatively small. We use the word relatively to indicate that the threshold for
characterizing a bin as big/small depends on the properties of the black-box function, i.e.,
how quickly it diverges outside of the data manifold. ML models learn to map x→ y only
in the manifold of the data generating distribution X . Therefore, the black-box function
f can take any arbitrary form away from X without any increase in the training loss. On
the other hand, when a limited number of samples is available, it maybe necessary to lower
K to ensure a robust estimation of the mean effect. An end-to-end experimentation on
the effect of OOD will be provided in Case 2 of Section 5.1. In Figure 1 we illustrate a
small example where the underlying black-box function f has different behavior on the
data generating distribution and away from it. As can be seen in Figure 1(a), we set the
black-box function to be f = x1x2 inside |x1 − x2| < 0.5 and to rapidly diverge outside of

5. For example, the computation of that Jacobian can be done in a single command using TensorFlow
tf.GradientTape.jacobian(predictions, X) and PyTorch torch.autograd.functional.jacobian(f, X)

6. Technically, having access to ∇xf is not a prerequisite, since the partial derivative ∂f
∂x

can be approximated
numerically, with finite differences. However, in this case, the computational advantages are canceled.
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this region. The first feature follows a uniform distribution, i.e., x1 ∼ U(0, 10), and for the
second feature x2 = x1. The local effect of x1 is Ex2|x1

[f1(x)] = x1. Splitting in K bins, the
first bin covers the region [0, 10K ), therefore, as discussed in 4.1, the ground truth bin effect
is
∫ 10/K
0 Ex2|z [f1(x)] ∂z = 5

K . In Figure 1(b), we observe that as the bin-length becomes
bigger (smaller K), DALE approximates the effect perfectly, whereas, ALE fails due to OOD
sampling. This happens because in the ALE approximation of Eq. (6), the bin limits zk−1, zk
fall outside of the region |x1 − x2| < 0.5.
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Figure 1: (Left) The black-box function f of Section 4.3. (Right) Estimation of the bin effect
of the first bin for DALE and ALE, for varying number of bins K.

4.4. Bias and variance

Let a finite dataset of samples S, drawn independently and identically distributed (i.i.d)
from the data generating distribution of X . DALE computes the accumulated local effect
(Eq. (1)), using the approximation in (Eq. (7)). The expected value of the approximation
across different datasets is

ES [f̂DALE(x)] = ∆x

kx∑
k=1

ES [
1

|Sk|
∑

i:xi∈Sk

fs(x
i)] (11)

Notice also that for the values of x at the end of bin kx, Eq. (1) can be rewritten as (after
omitting the constant c)

fALE(x) =

kx∑
k=1

∫ xk

xk−1

EXc|Xs=z[fs(x)]∂z (12)

where x0 = xs,min and xi, i = 1, . . . , kx are the bin limits.
If we assume that each bin is sufficiently small such that fs(x) does not depend on xs (i.e.,
f(x) is linear wrt xs) within the bin, then Eq. (12) becomes

fALE(x) =

kx∑
k=1

EXc|Xs∈Sk [fs(x)]

∫ xk

xk−1

∂z = ∆x

kx∑
k=1

EX∈Sk [fs(x)] (13)
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From Eqs. (11) and (13) we have

ES [f̂DALE]− fALE(x) = ∆x

kx∑
k=1

ES [
1

|Sk|
∑

k:xk∈Sk

fs(x
k)]−

∆x

kx∑
k=1

EX∈Sk [fs(x)] = ∆x

kx∑
k=1

(ES [µ̂sk]− µsk) = 0 (14)

since the expected value of the sample mean is an unbiased estimator of µsk. As a result,
under the condition of linearity wrt xs within the bin, DALE is an unbiased estimator of
the feature effect. If this assumption is violated (e.g., large bin size or highly nonlinear
function), then this approach may introduce bias. The variance of the estimator is given7 by

Var[µ̂sk] =
(σsk)2

|Sk|
, where (σsk)2 is the variance of fs within the bin. Furthermore, since the

samples xi are independent, µ̂sk for k = 1, . . . , kx are also independent. The variance of the
estimation can then be approximated as

Var[f̂DALE(x)] = (∆x)2
kx∑
k

Var[µ̂sk] = (∆x)2
kx∑
k

(σsk)2

|Sk|
≈ (∆x)2

kx∑
k

(σ̂sk)2

|Sk|
(15)

where (σ̂sk)2 is the sample variance within bin k. Equation (15) allows the calculation of the
standard error for the DALE approximation.

5. Experiments

This section presents the experimental evaluation of DALE using two synthetic and one real
dataset. The experiments aim to compare DALE (f̂DALE) with ALE approximation (f̂ALE)
from the perspectives of both efficiency and accuracy.

Metrics. For evaluating the efficiency of the approximations we measure the execution
times (in seconds). For evaluating the accuracy we use: (a) qualitative comparison of
the feature effect plots and (b) the Normalized Mean Squared Error which is defined as
NMSE<approx> =

E[(fALE−f<approx>)2]
Var[fALE] .

Synthetic Datasets. The first synthetic dataset (Case 1) is designed to compare the
approximations in terms of efficiency. For this reason, we generate design matrices X of
varying dimensionality D and number of instances N . The second synthetic dataset (Case 2)
is designed to compare the approximations in terms of accuracy. We define a data generating
distribution X and a black box function f with known forms for being able to directly
compute the ground-truth ALE from Eq. (1). Both X and f are designed to amplify the
effect of OOD sampling.

7. We show that in the supporting material.
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Real Dataset We choose the Bike-Sharing dataset for two reasons. Firstly, it is the
dataset utilized in the original ALE paper, so it is a proper choice for unbiased comparisons.
Secondly, we wanted a dataset with enough training points to approximate the feature effect
accurately, since the ground-truth is not available. Therefore, we want to check that f̂DALE
and f̂ALE provide similar effects using dense bins. We also evaluate the accuracy of both
methods behave when using larger bins.

5.1. Synthetic Datasets

5.1.1. Case 1 - Efficiency comparison

In this example, we evaluate the efficiency of the two approximations, f̂DALE and f̂ALE, through
the execution times. We want to compare how both approximations perform in terms of the
dimensionality of the problem (D), the dataset size (N) and the size of the model L. In
each experiment we generate a design-matrix X, by drawing N ·D samples from a standard
normal distribution. The black-box function f is a fully-connected neural network with L
hidden layers of 1024 units each. All experiments are done using K = 100. We want to
clarify that the value of K plays almost no role in the execution times.

In Figure 2, we directly compare f̂DALE and f̂ALE in two different setups: in Figure 2(Left),
we use a light setup of N = 103 examples and a model of L = 2 layers, whereas in
Figure 2(Right), a heavier setup with N = 105 and L = 6. We observe that in both cases,
DALE executes in near-constant time independently of D, while ALE scales linearly with
wrt D, confirming our claims of Section 4.2. The difference in the execution time reaches
significant levels from a relatively small dimensionality. In the heavy setup, ALE needs
almost a minute for D = 20, three minutes for D = 50, and 15 minutes for D = 100. In
all these cases, DALE executes in a few seconds. Another critical remark is that DALE’s
execution time is almost identical to the computation of the Jacobian J, which is benefited
by automatic differentiation. Hence, we confirm that the overhead of performing steps 3-5
of Algorithm 1 is a small fraction of the total execution time. Another consequence of this
remark is that we can test many different bin sizes with near-zero computational cost.

In Figure 3, we rigorously quantify to what extent the dataset size N and the model size
L affect both methods. In Figures 3(a) and 3(c), we confirm that both N and L have crucial
impact in ALE’s execution times. Therefore, for a big dataset and a heavy model f , ALE’s
execution time quickly reaches prohibitive levels. In contrast, in Figures 3(b) and Figures 3(d),
DALE is negligibly affected by these parameters. In the figures, we restrict the experiment
to cases up to 100-dimensional input for illustration purposes. The same trend continues for
an arbitrary number of dimensions. DALE can scale efficiently to any dimensionality as long
as we have enough resources to store the dataset, evaluate the prediction model f and apply
the gradients ∇xf .

5.1.2. Case 2 - Accuracy Comparison

In this example, we evaluate the accuracy of the two approximations, f̂DALE and f̂ALE, in a
synthetic dataset where the ground truth ALE is accessible. As discussed in Section 4.3, ALE
approximation is vulnerable to OOD sampling when the bins are wide, or equivalently, the
number of bins K is small. We want to compare how both approximations behave in a case
where the local effect is noisy. We design an experiment where we know the black-box function
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Figure 2: Case 1. Comparison of the execution time of DALE and ALE wrt dimensionality
in two setups: (Left) Light setup; N = 103, L = 2. (Right) Heavy setup; N =
105, L = 6
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Figure 3: Case 1. Measurements of the execution time wrt dimensionality D. From left to
right: (a) f̂ALE for L = 2 and many dataset sizes N (b) f̂DALE for L = 2 and many
dataset sizes N (c) f̂ALE for N = 103 and many model sizes L (d) f̂DALE for N = 103

and many model sizes L

and the data generating distribution. The black-box function f : R3 → R is split in three
parts to amplify the effect of OOD sampling. It includes a mild term f0(x) = x1x2 + x1x3
in the region 0 ≤ |x1 − x2| < τ and then a quadratic term g(x) = α((x1 − x2)2 − τ2) is
added(subtracted) over(under) the region, i.e.:

f(x) =


f0(x) , 0 ≤ |x1 − x2| < τ

f0(x)− g(x) , τ ≤ |x1 − x2|
f0(x) + g(x) , τ ≤ −|x1 − x2|

(16)

The data points Xi = (xi1, x
i
2, x

i
3) are generated as follows; xi1 are clustered around the points

{1.5, 3, 5, 7, 8.5}, xi2 ∼ N (µ = x1, σ2 = 0.1) and xi3 ∼ N (µ = 0, σ23 = 10). In Figure 4(a), we
illustrate f(x) for x3 = 0, as well as the generated data points. In this example, the local
effect of x1 is ∂f

∂x1
= x2 + x3. Due to the noisy nature of x3, both ALE and DALE need a
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Table 1: Case 2. Evaluation of the NMSE between the approximations and the ground truth.
Blue color indicates the values that are below 0.1.

Accuracy on the Synthetic Dataset (Case 2)
Number of bins

1 2 3 4 5 10 20 40

NMSE
f̂ALE 100.42 22.09 4.97 2.81 0.78 1.49 0.34 0.39
f̂DALE 0.10 0.03 0.09 0.02 0.02 0.82 0.24 0.38

large number of sample for robust estimation. Therefore, we need to lower the number of
bins K. As will be shown below, both ALE and DALE fail to approximate the feature effect
for high K. On the other hand, when using a lower K, ALE approximation fails due to OOD
sampling, while DALE manages to accurately approximate the feature effect.

In Figure 4(b) and Figure 4(c), we observe the estimated effects for K = 50 and K = 5.
In Figure 4(b), (K = 50) the approximations converge to the same estimated effect which is
inaccurate due to many noisy artifacts. In Figure 4(c), (K = 5) we observe that for small K,
DALE approximates the ground-truth effect well, whereas ALE fails due to OOD sampling.
Table 1 provides the NMSE of both approximation for varying number of bins K. We observe
that DALE consistently provides accurate estimations (NMSE ≤ 0.1) for all small K values.

The experiments helps us confirm that when K increases, both approximations are based
on a limited number of samples, and are vulnerable to noise. When K decreases, DALE
lowers the resolution but provides more robust estimations. In contrast, ALE is vulnerable
to OOD sampling.
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Figure 4: Case 2 experiment. (a) The black-box function f of Section 4.3. (b) Estimation of
the feature effect for a large number of bins K = 50. (c) Estimation of the feature
effect for a small number of bins K = 5.
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Table 2: Bike-Sharing Dataset. Measurements of the execution time.
Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

Number of Features
1 2 3 4 5 6 7 8 9 10 11

f̂ALE 0.85 1.78 2.69 3.66 4.64 5.64 6.85 7.73 8.86 9.9 10.9
f̂DALE 1.17 1.19 1.22 1.24 1.27 1.30 1.36 1.32 1.33 1.37 1.39

5.2. Real dataset

In this section, we test our approximation on the Bike-Sharing Dataset Fanaee-T and Gama
(2013). 8 The Bike-Sharing Dataset is chosen as the main illustration example in the original
ALE paper, therefore it was considered appropriate for comparisons. The dataset contains
the bike rentals for almost every hour over the period 2011 and 2012. The dataset contains 14
features, which we denote as X<feature_name>. We select the 11 features that are relevant to
the prediction task. Most of the features are measurements of the environmental conditions,
e.g. Xmonth, Xhour, Xtemperature, Xhumidity, Xwindspeed, while some others inform us about
the day-type, e.g. whether we refer to a working-day Xworkingday. The target value Ycount
is the bike rentals per hour, which has mean value µcount = 189 and standard deviation
σcount = 181. We train a deep fully-connected Neural Network with 6 hidden layers and
711681 parameters. We train the model for 20 epochs, using the Adam optimizer with
learning rate 0.01. The model achieves a mean absolute error on the test of about 38 counts.

Efficiency. For comparing the efficiency, we measure the execution time of DALE and
ALE for a variable number of features. We present the results in Table 2. We confirm that
DALE can compute the feature effect for all features in almost constant time wrt D. In
contrast, ALE scales linearly wrt D which leads to an execution time of over 10 seconds.

Accuracy. In the case of the Bike-Sharing, it is infeasible compare to compute the ground-
truth ALE. We have lack of knowledge about the data-generating distribution and the
dimensionality of the problem D = 11 is prohibitive for applying numerical integration on
Eq. (1). However, given the fact that the dataset has a large number of instances, DALE
and ALE provide almost identical approximations for all features for large K as we confirm
in Figure 5. We also notice the for all feature features, except Xhour, lowering the number of
bins K does not significantly impacts the approximation, since these features change slowly
wrt the feature value.

An exception is featureXhour. In this case, the f̂DALE approximation remains accurate when
lowering the number of bins K (Fig. 6(b)), while f̂ALE deteriorates significantly (Fig. 6(c)).
In Table 3 we evaluate both approximations on Xhour, for different number of bins K. We
set the ground-truth effect to be the approximation for K = 200. We observe that NMSE
remains low in DALE for all K, while for ALE it rapidly increases. This is due to OOD
sampling that occurs when the bin size becomes large.

8. It is dataset drawn from the Capital Bikeshare system (Washington D.C., USA) over the period 2011-2012.
The dataset can be found here

https://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip
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Figure 5: Bike-Sharing Dataset. DALE and ALE feature effect plots with K = 200 for:
Xmonth, Xatemp,Xhum.
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Figure 6: Bike-Sharing Dataset. Feature effect plots on Xhour: (Left) DALE vs ALE for
K = 200. (Center) DALE plots for K = {25, 50, 100}. (Right) ALE plots for
K = {25, 50, 100}

6. Conclusion and Future Work

This paper introduced DALE, an efficient and robust to OOD approximation for ALE.
Although ALE models the feature effect correctly in cases of correlated features, ALE’s
approximation scales poorly in high-dimensional datasets and suffers from OOD sampling. As
discussed in the paper, DALE addresses these limitations providing a fast and on-distribution

Table 3: Evaluation of DALE and ALE approximation when lowering the number of bins K.
The ground-truth effect has been computed for K = 200.

Accuracy on Bike-Sharing Dataset - Feature Xhour

Number of bins
100 50 25 15

NMSE
f̂ALE 0.04 0.43 0.79 0.83
f̂DALE 0.007 0.01 0.03 0.09



DALE: Differential Accumulated Local Effects

alternative. We proved that under some hypotheses, our proposal is an unbiased estimator
of ALE and we presented a method for quantifying the standard error of the approximation.
The experiments verified our claims. DALE significantly improves the efficiency of ALE’s
approximation by orders of magnitude and secures that local effect estimations come from
on-distribution samples. The latter leads to more accurate feature effect plots when the bins
are wide and the black-box function changes away from the data generating distribution.

The computational efficiency of DALE delivers a substantial margin for future extensions.
A significant advantage of our proposal is that effects are computed once on the training
set points and can be reused in different-size bins. The decision for the bin density, i.e., the
resolution of the plot, can be taken afterwards. Therefore, DALE permits creating feature
effect plots at different resolutions with near-zero computational overhead, which can be
embedded into a multi-resolution feature effect plots framework.
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