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Abstract. Convolutional neural networks exhibit exceptional perfor-
mance in predicting depth from stereo images. However, this performance
comes with two essential drawbacks (a) they consume extraordinary com-
putational power (clusters of GPUs) even for a single prediction and
(b) their memory and computational demand are predefined from the
training phase, hence they cannot be adjusted to the available resources
on-demand. For confronting these problems, we propose a scalable CNN
architecture (MSNet), adjustable to the specific requirements of each ap-
plication; it can reduce its computational demands by sacrificing some
precision or target for high accuracy if more resources are available. The
bias towards accuracy or efficiency can be determined at test time, with-
out any need for retraining. For achieving such scalability, we adopted the
basic ideas of scale-space theory and incorporated them into the MSNet
architecture. MSNet exhibits challenging performance comparing to the
state-of-the-art methods in the SceneFlow dataset, even though it uses
considerably less learnable parameters.

Keywords: Depth Estimation, Stereo Vision, Deep Learning, Multi-
Scale Processing

1 Introduction

Stereo vision forms a particular case of the general 3D reconstruction problem.
Stereo cameras share the same orientation while their center is displaced hor-
izontally by a distance B. The following relation expresses stereo vision’s 3D
geometry:

z = f
B

d
(1)

where z is the distance from the camera level (depth), f is the focal length
and d is the disparity. Defining the stereo pair as X = (XL, XR), the stereo
problem demotes in finding all correspondences XL(x, y)↔ XR(x− d, y)∀(x, y)
which, is a patch-matching procedure. Thus, disparity estimation is based on the
hypothesis that the local context of correspondent points is similar. If we define

as P
{L|R}
n×n [x, y] the n× n square patch centered at X{L|R}[x, y], g(·) a metric of

patch similarity, and Y [x, y] the ground truth disparities, then the hypothesis is:
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g(PL
n×n[x, y], PR

n×n[x− d∗, y]) > g(PL
n×n[x, y], PR

n×n[x− d, y])

∀d ∈ [0, D] : d 6= d∗,where d∗ = Y [x, y]
(2)

For hypothesis 2 to hold, we must choose thoughtfully two critical parameters
that depend on the visual properties of the reference point: (a) the size of the
surrounding area that will be incorporated and (b) the scale of the compari-
son. Multiscale analysis provides an elegant framework for handling both issues.
Furthermore, it offers the mechanism for designing a scalable CNN model.

We define asX{L|R}(k,q) the image obtained fromX{L|R} ≡ X{L|R}(k0=1,q0=1)

through the typical downscaling process:

X{L|R}(k0=1,q0=1) downscaling−−−−−−−−→ X{L|R}(k,q0=1) downsampling−−−−−−−−−→ X{L|R}(k,q)

k ≥ 1, q ≥ 1
(3)

The paramters k ≥ 1 and q ≥ 1 are the downscaling and downsampling rate. The
downscaling part is performed with an appropriate low-pass filter (e.g. Gaussian
kernel) and the downsampling through an interpolation method. Based on this
formulation, we define a patch on a downscaled image as:

P
{L|R}(k,q)
n×n [x, y] = X{L|R}(k,q)[x− n : x+ n, y − n : y + n] (4)

For each reference point [x, y] there is a different combination of scale k and
patch size n × n that leads to a succesfull matching procedure. For example,
regions without texture require large patch size in order to incorporate features
from neighbour objects. On the other hand, for small foreground objects, a small
patch is suitable, since, in this case, background objects add noise to the com-
parison. This variability requires the execution of the patch matching process for
various combinations of scales and patch-sizes. For keeping the complexity low,
we restrict the search space in a single dimension, binding k, n to one parameter
t ≥ 1:

n× n = t(no × n0) (5)

k = t (6)

Due to the downscaling process (low-pass filetering), it is feasible to down-
sample the image without loss of information. Therefore, the two following
patches contain similar information, even though they have different sizes:

P
{L|R}(k,q=1)
n×n [x, y] ≈ P {L|R}(k,q)(n × n)/q [dx/qe, dy/qe],∀q ≤ k (7)

Due to equation 7 we obtain similar patch matching score, if instead of increasing
the patch size, we downsample the stereo pair:
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Fig. 1. Simple artificial example. The left and the right column correspond to two
different scenarios. In both columns, the first two images are the left and the right
stereo view of the same 3D pattern, using orthographic projection. The next two images
are the same views downscaled by a Gaussian filter. The red and blue bounding box
corresponding to the two different patch sizes and the red cross to the reference point.
In the graphs, we observe the curves of the matching process. The red dotted vertical
line corresponds to the ground truth disparity.

P
{L|R}(k=t,q=t)
(n0×n0)

[dx/te, dy/te] ≈ P {L|R}(k=t,q=1)
t(n0×n0)

[x, y] (8)

In figure 1, we design a simple artificial example to test the aforementioned
claims and to underline the importance of multiscale processing. We draw two
different test cases: in the left-column scenario the fine-scale (k = 1) with a small
patch size (n0 × n0 = 5 × 5) leads to superior accuracy, whereas in the right-
column scenario the coarse-scale (k = t = 2.6) with larger patch size (t(n0×n0) =
2.6(5×5) = 13×13) fits better. In both cases, the patch matching scores are simi-

lar using P
{L|R}(k=2.6,q=1)
13×13 [x, y] (red curve) and P

{L|R},(k=2.6,q=2.6)
5×5 [dx/2.6e, dy/2.6e]

(green curve) confirming the claim of 8.

2 Related Work

Stereo reconstruction, as a core problem of computer vision, has been heavily
studied over the last decades [1],[2]. Scharstein and Szeliski [3] provided a generic
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taxonomy of the stereo vision methods based on their approach to the four fun-
damental tasks: (a) matching cost computation (b) cost aggregation (c) disparity
computation/optimisation and (d) disparity refinement.

Up until recently, most methods relied on hand-engineered features for solv-
ing the matching cost and disparity computation problems. There have been
proposed many different dissimilarity metrics, such as LoG, CENSUS [4] and
BRIEF [5]. The Graph Cut [6], [7] and belief propagation [8] methods managed
to incorporate broader information in the final prediction. Hirschmuller min-
imised a global energy function with the Semi-Global-Matching (SGM) method
[9]. Geiger et al. [10] attempted a Bayesian approach, using a prior distribution
of the disparity image based on some robustly matched points.

Zagoruyko and Komodakis introduced the use of CNNs for comparing im-
age patches [11]. Zbontar and LeCun [12] used a similar CNN for computing
the matching cost. They trained a binary CNN classifier to predict whether two
patches correspond to the same 3D point. Their complete method, which in-
volved some non-learnable parts (SGM), achieved state-of-the-art performance
in the two well-known stereo datasets Middlebury [13] and KITTI [14]. Luo
et al. [15] achieved comparable accuracy with a much faster implementation
by treating the matching cost as a multi-label classification problem. For the
disparity refinement task, Shaked and Wolf [16] proposed a disparity network
which refined the initial disparity predictions, using confidence scores. Gidaris
and Komodakis [17] proposed a CNN with three separate parts (Detect, Replace,
Refine) for computing a refined disparity image. Seki and Pollefeys implemented
a neural network version of the SGM algorithm, which learned from the data
the penalty-scores of the discontinuities in the disparity map.

All the approaches mentioned above used a CNN method for solving a par-
ticular subtask of the disparity estimation. On the contrary, Mayer et al. [18] im-
plemented an end-to-end CNN architecture (DispNet) for disparity estimation.
The architecture included a contracting and an expanding part before making
the final prediction. Apart from the proposed model, they also introduced a new
synthetic dataset (SceneFlow) with approximately 35000 stereo images. Kendall
et al. [19] adjusted their architecture to the stereo vision geometry, by forming
explicitly the Cost Matrix. They achieved that by introducing two novelties; (a) a
3D-convolutional network for processing the cost matrix and (b) a differentiable
soft-argmin operator for the disparity estimation.

Having achieved to formulate the stereo vision problem with an end-to-end
CNN architecture, many works focused on exploiting semantic and context in-
formation. For this purpose, it was widely used the encoder-decoder architecture
with residual connections, which contains many downscaling and upscaling lay-
ers.

Chang et al. [20] designed a Spatial Pyramid Pooling (SPP) architecture for
incorporating global information by aggregating context from different scales in
the formation of the Cost Matrix. The Cost Matrix was then processed by a
stacked-hourglass architecture (encoder-decoder structure). The Cascade Resid-
ual Network [21] has two subsequent stack-hourglass CNNs. The first one pro-
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duces an initial disparity prediction that is used for warping the reference image
and thus estimate an initial (unsupervised) error. Afterwards, the second CNN
exploits this estimate for computing a refined prediction. EdgeStereo [22] fo-
cuses on the fine details that appear mainly around edges. Noticing that this
area is error-prone due to occlusions, the network produces an edge-map which
is subsequently used for measuring an edge-aware smoothness loss. DeepPruner
[23] focuses on speeding-up the inference time by excluding some disparities and
formulating a reduced Cost Matrix. This approach decreases the search space
drastically leading to an efficient prediction.

3 The MSNet model

In this section we analyse the building blocks (modules) that comprise the pro-
posed MultiScaleNetwork (MSNet). Each module, named as mi, is a procedure
that gets a tensor as input and produces another one as output. The learnable
parts of each module are named as fi and the non-learnable ones as gi. All mod-
ules are differentiable so that the backpropagation algorithm to be applicable
end-to-end. Figure 2 provides an overview of the model.

Fig. 2. Overview of MSNet

Downscaling Module - mt
1 The module mt

1 : RH×W → RdH/te×dW/te is ap-
plied separately to each stereo image for producing a downscaled stereo pair:
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(XL,t, XR,t) = (mt
1(XL),mt

1(XR)) (9)

The parameter t is the downscaling and downsampling factor, as defined in
equations 5, 6. The module mt

1 is a two-step procedure; firstly each stereo image
X{L|R} is convolved with the discrete Gaussian kernel of equation 10 in order
to remove the high-frequency components, and afterwards the downscaling is
performed with bilinear downsampling interpolation.

k(x, y, σ) =
1

2πσ2
· e − (x2 + y2)/2σ2 , σ = t/3 (10)

Feature Extraction - m2 The module m2 : RH×W×3 → RH×W×K extracts
local features from the raw stereo images, through a CNN (f2). The feature
extraction process is repeated separately at each scale:

m2 : (XL,t
desc, X

R,t
desc) = (f2(XL,t), f2(XR,t)) (11)

Comparison Volume - m3 The module m3

m3 : (RH×W×K ,RH×W×K ,RH×W×3)→ RD×H×W×(K+3)

forms the Comparison Volume (Ct), by zipping the comparison information into
a 3D tensor. Normally, the Comparison Volume is formed by simply concatenat-
ing the descriptors in each disparity position. This approach introduces signifi-
cant redundancy; from the D×H ×W × 2K values of the Comparison Volume
only the H ×W × 2K are unique. For reducing such redundancy, we design a
new comparison metric between two scalar features:

l : R2 → R : l(a1, a2) =
|a1|+ |a2|

2
· e−|a1−a2| (12)

The first term |a1|+|a2|
2 measures the existence of a feature in each patch sepa-

rately (0 signifies non-existence) and the second term e−|a1−a2| ∈ (0, 1] measures
the coexistence of the feature in both patches. Finally, we concatenate the raw
left image XL, in order to propagate the raw image in the subsequent layers.
The formulation of the comparison volume is described in equation 13:

Ct[d, x, y, i] =

{
l(XL,t

desc[x, y, i], X
R,t
desc[x− d, y, i]) , i ≤ K

XL,t[x, y, i−K] , i > K
(13)

Comparison Volume Processing - m4 The module m4 : RD×H×W×K →
RD×H×W×K is a CNN (f4) with 3D convolutional layers, that incorporates local
information along all 3 dimensions (the 2 spatial ones x, y and the disparity d)
for refining the Comparison Volume. It ouptuts a same-dimension volume Qt:

m4 : Qt = f4(Ct) (14)
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Multiscale Fusion - m5 The module m5 is responsible for exploiting the
information from different scales and combine it in a single tensor. The proce-
dure takes place recursively in pairs of two Comparison Volumes, from coarse
to fine scales. A trilinear upsampling layer gt3 : RD×H×W×K → RtD×tH×tW×K

is applied to the low-dimension Comparison Volume before a CNN (f5) with
3D-Convolutional layers merge the information of the two scales into one tensor,
as describe in equation 15. Repeating this procedure recursively as shown in
algorithm 1 leads to a single Comparison Volume, that incorporates information
from all separate scales. The implementation of the scale fusion procedure as a
recursive merging is the key idea that enables our network to be readjustable:

Q{ti,···,tn} = f5(Qti ⊕ gti/ti−1

5 (Q{ti−1,···,tn})) (15)

Algorithm 1 Multi-scale fusion - Module m5

1: procedure multi scale fusion(Qt0 , Qt1 , · · ·, Qtn) → Q{t0,t1,···,tn}

2: Q← Qtn . Initialize
3: for i=n-1;-1;0 do
4: Q← g

ti+1/ti
3 (Q) . 3D Upsampling

5: Q← Qti ⊕Q . Concatenation
6: Q← f5(Q) . Merge information
7: end for
8: return Q{t0,t1,···,tn} ← Q . Result
9: end procedure

Module For Depth Prediction - m6 The module mt
6 : RD/t×H/t×W/t×K →

RD×H×W implements the final disparity prediction. It consists of three se-
quential parts: (a) a CNN with 3D-convolutional layers f6 : RD×H×W×K →
RD×H×W that assigns a probability in each possible disparity S{t0,···,tn} =
f6(Q{t0,t1,···,tn}), (b) a trilinear upsampling layer for upsampling S in the initial
dimensions D × H × W and finally (c) a softmax operator applied along the
disparity dimension, for obtaining the final prediction Ŷ {t0,···,tn}.

Putting all pieces together Before the execution of a single prediction, a set of
processing scales T = {t0, ..., tn} must be defined. The modules m1,m2,m3,m4

operate separately on the stereo pair for producing a single scale Comparison
Volume Qt. Subsequently, the module m5 combines the information from all
single-scale volumes to a single tensor Qt0,...,tn and the module m6 makes the
disparity prediction. The whole prediction procedure is summarized in algorithm
2.
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Algorithm 2 MultiScaleNetwork (MSNet)

1: T ← {t0, t1, ..., tn} . Define Processing Scales
2: procedure MSNet(XL, XR, T ) → Ŷ
3: for t in T do
4: (xL,t, xR,t)← (mt

1(XL),mt
1(XR)) . Downscaling

5: (xL,t
desc, x

R,t
desc)← (m2(XL),m2(XL)) . Features

6: Ct ← m3(XL,t
desc, X

R,t
desc, X

L,t) . Comparison Volume
7: Qt ← m4(Ct)
8: end for
9: Q{t0,t1,···,tn} ← m5(Qt0 , Qt1 , · · ·, Qtn) . MultiScaleFusion

10: Ŷ {t0,···,tn} = m6(Q{t0,t1,···,tn}) . Prediction
11: return Ŷ {t0,···,tn}

12: end procedure

Cnn architectures

The learnable parts of MSNet (f2, f4, f5, f6) are four CNNs, that follow simi-
lar architecture. A residual connection, which comprises of two blocks of Batch
Normalization, ReLU and Convolution in sequential order with a residual con-
nection added to the output, is used as a fundamental building block in all
architectures. In f2, which operates on 2D inputs, the convolution is 2D (i.e.
kernel size 3x3), whereas for f4, f5, f6 the convolution is 3D, applied along the
disparity dimension as well (kernel size 3x3x3).

Module Structure Input Output Parameters

f2
BN+ReLU+Conv2D HxWx3 HxWx32

74592
4xRes2D HxWx32 HxWx32

f4
BN+ReLU+Conv3D DxHxWx64 DxHxWx32

196128
3xRes3D DxHxWx32 DxHxWx32

f5

BN+ReLU+Conv3D DxHxWx64 DxHxWx64
331776BN+ReLU+Conv3D DxHxWx64 DxHxWx32

3xRes3D DxHxWx32 DxHxWx32

f6

BN+ReLU+Conv3D DxHxWx64 DxHxWx64
1391042xRes3D DxHxWx32 DxHxWx32

BN+ReLU+Conv3D DxHxWx32 DxHxW

MSNet HxWx3 HxW 741600

Table 1. Description of CNN architectures

4 Experimental Evaluation

The experimental evaluation is organized in four parts; In the first part (4.1),
MSNet is compared to the State-of-the-art methods, in terms of accuracy and
efficiency. In the second part (4.2, 4.3), we set up an internal benchmark for
questioning the major architectural choices of MSNet; we evaluate some alter-
native models that share similar designing principles with the MSNet (i.e. same
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backbone architecture) with crucial modifications in the decisive details we want
to measure. In the third part (4.4), we observe how MSNet behaves under dif-
ferent sets of processing scales, quantifying the trade-off between accuracy and
efficiency. In the final part (section 4.5), we illustrate how MSNet has learned to
incorporate information from all processing scales in an incremental fashion.

All experiments are based on the synthetic SceneFlow dataset [24], which
consists of dense ground truth disparity images (H=540, W=960). The default
training/test set split (35454 training vs 4370 testing images) has been followed
by all benchmarks. For the evaluation of the models, we use (a) the End-Point-
Error (EPE) metric - mean absolute prediction error - and (b) the percentage
(PCGk) metric - the percentage of points with absolute error over k pixels. All
models have been trained from scratch in a GeForce GTX 1080 GPU, with ran-
dom initialization following the fan-in approach (θ ∼ N(0, σ =

√
2/n)) [25]. The

training images are randomly cropped in (H=256, W=512) patches and normal-
ized with ImageNet preprocessing statistics (mean, std). The Adam optimizer
(β1 = 0.9, β2 = 0.999) with a learning rate of 0.001 was used for 15 epochs, with
batch size set at 2. At the training phase of MSNet, the processing scales were
preset to T = {22, 23, 24, 25} and the final loss L was a weighted sum of the EPE
loss computed after incorporating each processing scale:

Loss :=
1

2
L{t0,t1,t2,t3} +

1

6
L{t1,t2,t3} +

1

6
L{t2,t3} +

1

6
L{t3} (16)

where: L{ti,...,tj} = |Ŷ {ti,...,tj} − Y | (17)

4.1 Comparison With The State-Of-The-Art

The comparisons are based on three criteria; (a) accuracy (EPE, PCG3) (b)
efficiency (runtime) and (c) the number of free parameters. The efficiency is
measured as the runtime for a single prediction. The number of free parameters is
manifested since it is related to the memory resources and the amount of training
data demanded by each model. In table 2, we observe that MSNet achieves
competitive performance (i.e. 1.017px EPE compared to the 0.74px of the SOTA
[23]) even though it uses much less free parameters and it is more efficient than
(almost) all its competitive networks. Specifically, only [26] outperforms MSNet
both in terms of accuracy and efficiency; models [27], [23], [28] are more accurate
but less efficient and they use more free parameters. The only model (apart from
[26]) that is more efficient than MSNet is [18], but is less accurate.

4.2 The Effect Of Reinforcing Multi-Scale Processing

In this section, we question whether enforcing the multi-scale processing ex-
plicitly, as we do in MSNet, is advantageous over using multi-scale process-
ing internally as part of the CNN architecture. For this reason, we design four
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Method Parameters(M) Runtime(s) EPE(px) PCG3(%)

Our benchmark - IMS architectures

MSNet 0.741 0.32 1.017 3.98

OneRes (S) 0.463 0.11 1.508 6.11
MRes2d (S) 0.659 0.10 1.671 6.98
MRes3d (S) 0.514 0.15 1.504 5.86

MRes2d3d (S) 0.677 0.3 1.897 8.078

OneRes (B) 1.608 0.22 1.37 5.53
MRes2d (B) 1.458 0.17 1.32 5.43
MRes3d (B) 1.682 0.21 1.322 5.11

MRes2d3d (B) 1.772 0.32 1.613 6.67

Our benchmark - Free weights

Free2d 0.969 0.24 1.126 4.33
Free3d 2.75 0.33 0.882 3.48

Free2d3d 2.974 0.33 1.107 4.36

SOTA

PSMNet[20] 5.2 0.45 1.09 -
CRL[21] - 0.47 1.32 -

DispNetC[18] - 0.06 1.68 -
GC-Net[19] 3.5 0.95 2.51 9.34

Edge-Stereo[22] - - 1.12 4.99
CSPN[27] 250 0.5 0.78 -

GA-Net[28] 2.3 1.5 0.84 -
AMNet[23] 4.37 - 0.74 -

DeepPruner[26] - 0.6 0.97 -

Table 2. Model comparison on the SceneFlow dataset. The EPE and PCG of MSNet
are measured for the default set of scales T = {22, 23, 24, 25}.

Fig. 3. Illustration of the prediction process at different processing scales. The first
row (left to right) contains the left image at each scale XL,t : t ∈ {22, 23, 24, 25}. The
second and third-row contain the single scale predictions Ŷ t and the corresponding
absolute error images Et, following the scale ordering of the first row. The last two
rows contain the multiscale predictions; processing scales are added as we move from

right to left (i.e. Ŷ {t0=25} corresponds to the far-right image, while Ŷ {t0=22,...,t0=25}

to the far-left one) and the corresponding error images. We can observe the limitations
of single-scale predictions; coarse scales fail in describing the details between objects
while fine scales suffer from instabilities. On the other hand, the multiscale prediction
combines the benefits of both worlds; it starts with a rough estimation of the disparity
image, incorporating higher-resolution details as it integrates fine scales.
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new models that follow the MSNet designing principles, but without reinforcing
multi-scale processing explicitly; instead, they follow the hourglass architecture
(i.e. encoder-decoder) which is the proposed method, by the literature, for apply-
ing multi-resolution processing internally. We design the following four architec-
tures; OneRes operates only on the initial resolution, MRes2d uses the hourglass
model only in the 2D-processing part (f2), MRes3d only in the 3D-processing
part (f4, f5, f6) and finally MRes2d3d in both the 2D and 3D processing part
(f2, f4, f5, f6). For each of the 4 CNNs, we create two versions; the small (S)
version with the same order of free parameters as the MSNet (approximately
600K) and the big (B) version which has as many parameters as the GPU’s
memory allows (approximately 1.6M). For clarity, we call all these new models
with the common name Implicit Multi-Scale (IMS) architectures.

In figure 4 (Left), we observe that MSNet outperforms both versions of the
IMS architectures, which is a strong indicator that reinforcing multi-scale pro-
cessing explicitly is beneficial for the problem of depth estimation. As expected,
all big (B) networks outperform small (S) ones.
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Fig. 4. (Left) MSNet vs IMS architectures. (Right) MSNet vs Free*-Weight Networks.

4.3 The Cost of Sharing Weights

MSNet obtains its fundamental advantage of being adjustable by repeating its
learnable-parts in between the different processing scales. An important ques-
tion that arises is how much is the cost in terms of accuracy for gaining such
scalability; what is the corresponding EPE if we use the MSNet architecture
without weight sharing (i.e. train different learnable parts at each scale, instead
of repeating the same building blocks). For answering this question, we create a
second internal benchmark, by implementing three new CNN architectures; The
MSNet-Free2d has free weights only in the 2D-processing part (does not repeat f2
blocks), MSNet-Free3D has free weights only in the 3D-processing part (does not
repeat f4, f5, f6 building blocks) and, finally, MSNet-Free2D3D has free weights
in both parts. Since these new architectures are no longer adjustable, we prede-
fine the processing scales to be T = {22, 23, 24, 25} for being in-line with MSNet.
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The evaluation on the SceneFlow dataset is presented in figure 4. We notice
that training different CNNs for each scale of the 3D-processing part (f4, f5, f6)
leads to superior performance. This experimental observation indicates that the
MultiScaleFusion algorithm, which incorporates the different scales in pairs of
two, achieves a suboptimal solution. This observation can be explained due to
two reasons; (a) the number of free weights in MSNet Free-* models is increased
by a factor of 4x compared to MSNet and (b) MultiScaleFusion’s designing prin-
ciple of incorporating only one new scale at a time, deprives the beneficial global
view of all scales simultaneously. Even though MSNet-Free3D outperforms our
proposed model, such approach cancels the fundamental scalability advantage
of MSNet.

4.4 MSNet Evaluation Under Different Scale Combinations

The fundamental advantage of MSNet compared to other architectures is the
ability to get tuned between accuracy and efficiency at inference. In figure 5, we
measure how three fundamental properties of MSNet (a) accuracy (b) stability
and (c) efficiency vary under different scale combinations. For the accuracy, mea-
sured through the EPE, we can observe two interesting properties; (a) combined
scales have different impact on the accuracy compared to when applied individ-
ually (i.e. T = {t0 = 4, t1 = 32} has the best performance among all two-scale
combinations, though t0 = 4, t1 = 32 have the worst accuracy individually)
and (b) adding an additional scale in a set always improves accuracy. Stability
is quantified through the standard deviation σ of the EPE. We observe that
coarse scales tend to be more stable and that adding processing scales increases
stability. Finally, we notice that the runtime increases exponentially as we add
scales and that it is mainly driven by the downscaling factor t of the highest
resolution rather than the amount of scales involved (e.g the set T = {t0 = 4}
is less efficient than T = {t0 = 8, t1 = 16, t2 = 32}).

In general terms, MSNet has a robust behavior under different scale combina-
tions. Adding a new processing scale increases the accuracy. Excluding the com-
putational demanding fine scales, improves the efficiency exponentially, without
an accuracy crumble. As a characteristic example, the combination T = {8, 32}
has EPE < 2 px and execution time < 0.05s.

4.5 Multi-Scale fusion analysis

In this section, we provide a qualitative illustration of how MSNet gradually
adopts the information from coarse to fine scales.

In figure 6, we focus on the MultiScaleFusion algorithm. We choose two re-
gions with different properties; the yellow-box region contains a thin object with
rich texture, appropriate for a small, fine-scale patch. Conversely, the orange-box
contains a background wall with a repetitive pattern, appropriate for a large,
coarse-scale patch. We verify that the single-scale predictions agree with our in-
tuition; only fine-scales (t = 22, t = 23) succeed in the yellow-box area, whereas
only coarse-scales succeed in the orange area (t = 24, t = 25).
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Fig. 5. Presentation of MSNet accuracy and efficiency for different scale combinations.
On the x-axis, we have alligned the scale combinations in increasing order according
to the number of processing scales (the shades of grey represent groups with an equal
amount of scales). For each scale combination; the first plot represents the absolute µ
end-point-error (EPE), the second plot, the absolute deviation σ of the EPE and the
third plot the inference time.

The multi-scale prediction succeeds in both scenarios. In the yellow-box area,
the model initiates with an erroneous prediction from the coarse-scale t = 25, but
it gradually esteems the (most accurate) fine-scales. In the orange-box, where
the initial prediction t = 25 is accurate, the model remains unaffected by the
erroneous coarse-scales.

In figure 3, all the single and multi-scale predictions of a single example (from
the test set) are presented accompanied by their corresponding error images. We
observe that the prediction procedure follows a step-by-step refinement of the
initial low-resolution prediction; initially, the network predicts a rough coarse-
scale estimation of the depth. As it explores the fine-scales, it gradually adopts
high-resolution details for producing the final disparity map.

5 Conclusion and Future Work

In this paper, we proposed a scalable CNN model for depth estimation, that
can be tuned for accuracy or efficiency, according to the priorities of the user.
For achieving such agility, we designed and trained all the learnable parts of the
model in scale-independent tasks (feature extraction, combining information in
pairs of two processing scales etc.), which enables the definition of the processing-
scales during inference. We confirmed that in general terms, our model has
learned to utilise only the accurate sub-regions from each processing scale and
discard the erroneous ones. We also observed that reinforcing multi-scale process-
ing explicitly leads to superior performance compared to the models that apply
multi-scale implicitly. Finally, our method exhibits competitive results compared
to the State-of-the-art methods in the SceneFlow dataset, even though it involves
significantly less learnable parameters.

As we proposed, the most significant advantage of our method is the privilege
of choosing the processing scales at inference time. Nevertheless, we provide
no tool for answering a critical question; which specific scales to use according



14 Vasilis Gkolemis, Anastasios Delopoulos

disparity

0 20 40 60 80
sca

le{22, . . . , 25}

{23, 24, 25}

{24, 25}
{25}

pr
ob

ab
ili

ty
0.5

1.0
multi-scale

disparity

0 20 40 60 80 sca
le

22
23

24
25

pr
ob

ab
ili

ty

0.5

1.0
single scale

disparity

0 20 40 60 80
sca

le{22, . . . , 25}

{23, 24, 25}

{24, 25}
{25}

pr
ob

ab
ili

ty

0.5

1.0
multi-scale

disparity

0 20 40 60 80 sca
le

22
23

24
25

pr
ob

ab
ili

ty

0.5

1.0
single scale

Fig. 6. Illustration of the prediction process at two qualitatively different sub-regions
of the image. The first row of plots is related to the yellow-box-region and the second
to the orange-box-region. In all graphs, we observe the probabilities attached to each
disparity under consideration. The cyan area represents the probability mass attached
to each disparity; the blue line is the predicted disparity after the softargmax op-
erator is applied; the red line is the ground-truth disparity. The single-scale graphs
(right column) exhibit the probability mass when the prediction is made at each scale
separately. Conversely, in the multi-scale graphs (left column) the prediction is based

on an incremental number of scales; from Ŷ {t0=25} to Ŷ {t0=22,t1=23,t2=24,t3=25}

to the properties of the stereo pair. Hence, the scale specification depends on
the availability of computational resources and the prioritisation of accuracy or
efficiency, based on the following general rule; incrementing the number of scales
increases accuracy but deducts efficiency and vice versa. However, apart from the
above general rule, there is a qualitative relationship between the appropriate
processing scales and the properties of the stereo pair; future work should focus
on exploring this relationship.
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